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We look at issues that arise when data being encrypted and keys used to encrypt

the data are related. We look at the incidence of such relations in disk encryption and

password-based encryption, and design practical solutions to address the issue. We

explore problems in outsourced storage where keys and messages are related by design,

and develop a new framework, message-locked encryption, to provide practical and

theoretically interesting solutions. We look at a new framework for studying hash

functions, called Universal Computational Extractors towards proving security for some

of our constructions from cleaner assumptions.
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Introduction

In this work, we look at issues that arise when data being encrypted and keys used

to encrypt the data are related to each other. Such relations can occur in real systems as a

consequence of inevitable operating conditions, or due to misuse or neglect in the parts

of developers and users. Most cryptosystems are not built to deal with such relations

and their security guarantees do not continue to hold in such settings. In some cases, the

systems fail in obvious ways, while in other cases, the failures could be harder to detect,

making them even more dangerous.

First, we look at the incidence of key message relations in the context of disk

encryption and design practical solutions to address the issue. We then move on to study

the problem in a more general setting, motivated by applications such as password-based

encryption, and propose simple modifications to existing approaches to encryption that

can secure systems in the presence of key-message relations.

There are scenarios where keys and messages might be related by design, with

keys, instead of being picked at random, being generated from the messages themselves.

We explore settings in outsourced storage where this occurs, and design and develop

a new framework, message-locked encryption, to provide practical and theoretically

interesting solutions. Some of our constructions are supported by proofs which make

strong assumptions about the underlying primitives, particularly cryptographic hash

functions. Specifically, the proofs view the hash functions as being instantiations of

random functions. We look at a new framework for studying hash functions, called

1
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Universal Computational Extractors, which enables us to circumvent viewing hash

functions as instantiations of random functions. We now provide a high level overview

of these results.

Key-enciphering security

Key-enciphering security requires that schemes can securely encrypt their own

key as well messages containing the key as a substring. Encryption schemes have not

been designed to work when encrypting their own keys in the past, based on the view

that encryption of keys does not happen in practice.

However, there is a consensus among standardization groups, particularly among

groups involved in disk encryption, that key enciphering security is an important property.

Disk encryption must be length preserving, so we are talking about ciphers, not ran-

domized encryption schemes. In email archives of discussions of candidate enciphering

schemes for disk encryption, conducted by the Security in Storage Working Group (IEEE

P1619), there is an intriguing comment “I have not received any meaningful response

to the issue of grandma storing her keys on an encrypted drive. The WG must have

considered it the first time it came up.” Storing keys in the hard drive is safe only if

the underlying scheme is key-enciphering secure. The group eventually concluded that

key-enciphering security is important and desirable. The presence of key-enciphering

attacks on one candidate (LRW) influenced its rejection in favor of others on which

attacks were not found.

Meanwhile, the group did value security proofs. The encryption standard con-

cerning encryption of disk sectors involves wideblock ciphers, which are block ciphers

with input sizes much larger than conventional block ciphers such as AES. EME [79],

a wideblock cipher, is proven to achieve PRP-CCA security. A variant EME2 [75] was

standardized on the strength of its proofs, a host of efficiency properties, and the presumed

security of enciphering the key. Given that key enciphering security is a requirement,
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and that proofs are important, a discrepancy becomes obvious: while there is a proof of

PRP-CCA security, there is no proof of key enciphering security, confidence in the latter

resting only on the absence of discovered attacks.

This leads to the important question of how to bridge this gap. We want efficient

ciphers, both narrowblock (data is n bits long where n is the blocklength of the underlying

blockcipher) and wideblock (data is mn bits long for m≥ 2). These ciphers should be

tweakable, i.e., they should support an additional input called a tweak (usually the disk

sector number) the same input produces completely independent outputs with different

tweaks. They should be not only proven PRP-CCA secure but also proven to securely

encipher data that contains their own keys. In the narrowblock case this means the

message might equal the key, while in the wideblock case it means any block of the

message might equal the key. We do not want to use random oracles (ROs) but rather

want to prove all this assuming only what was assumed for EME, namely the standard

PRP-CCA security of the underlying blockcipher.

Proving security of encryption of key-dependent messages is notoriously hard,

as standard reduction techniques do not work. Random oracle based solutions [29] and

sophisticated non-RO solutions based on novel techniques have been proposed [36, 5, 38,

9], but they are far from practical.

We show nonetheless how to achieve the stated objective. We first provide StE,

a simple and efficient transform that, applied to any tweakable PRP-CCA blockcipher,

results in a tweakable narrowblock cipher that is not only proven PRP-CCA but also

proven to securely encipher its own key, assuming only PRP-CCA security of the starting

tweakable blockcipher. We then use StE as the basis for EtE, a transform that, applied

to any tweakable PRP-CCA wideblock cipher, results in another tweakable wideblock

cipher that, again, is not only proven PRP-CCA but also proven to securely encipher data

containing its own key in any block, assuming only PRP-CCA security of the starting
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wideblock cipher and of the tweakable blockcipher underlying StE.

We instantiated EtE with AES as the base blockcipher, tweaked via XEX [101],

and with EME as the base wideblock cipher. We implemented this with the AES-NI

instruction set. We found that EtE is only 15% slower than plain EME.

Encrypting messages depending on the key

Key enciphering security seeks to provide security when the key appears as

a message or as a substring of the message. We now move on to the more general

problem of providing security when messages being encrypted depend on the key. This

problem is referred to as Key dependent message security or KDM security, and was first

studied by Black, Rogaway and Shrimpton [29]. There are several practical scenarios

where such dependencies could arise. For example, Windows machines use a program

called BitLocker to encrypt hard disks. The key used by BitLocker to encrypt your

disk may reside on the disk. More generally, the key under which a secure filesystem is

encrypted may itself be stored in a file on the same system. The result is encryption of

key-dependent data.

As with key enciphering security, there is growing recognition that security of key-

dependent data, first defined to connect cryptography to formal methods [29] and provide

anonymous credentials [43], is a more direct and widespread concern for secure systems.

The problem is particularly acute when keys are passwords, for many of us store our

passwords on our systems and systems store password hashes. If nothing else, one cannot

expect applications to ensure or certify that their data is not key-dependent, making

security for key-dependent data essential for robust and misuse-resistant cryptography.

We provide a comprehensive treatment of security for key-dependent data for the

central practical goal of symmetric cryptography, namely authenticated encryption. For

each variant of the goal we either show that it is impossible to achieve security or present

an efficient solution. Our attacks rule out security for in-use and standardized schemes in
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their prescribed modes while our solutions show how to adapt them in minimal ways to

achieve the best achievable security.

Message-Locked Encryption

To save space, commercial cloud storage services such as Google Drive [69],

Dropbox [56] and bitcasa [28] perform file-level deduplication across all their users. Say

a user Alice stores a file M and Bob requests to store the same file M. Observing that

M is already stored, the server, instead of storing a second copy of M, simply updates

metadata associated to M to indicate that Bob and Alice both stored M. In this way,

no file is stored more than once, moving storage costs for a file stored by u users from

O(u · |M|) to O(u+ |M|).

However, as users we may want our files to be encrypted. We may not want the

storage provider to see our data. Even if we did trust the provider, we may legitimately

worry about errant employees or the risk of server compromise by an external adver-

sary. When users themselves are corporations outsourcing their data storage, policy or

government regulation may mandate encryption.

We introduce a new primitive that we call Message-Locked Encryption (MLE).

An MLE scheme is a symmetric encryption scheme in which the key used for encryption

and decryption is itself derived from the message. Instances of this primitive are seeing

widespread deployment and application for the purpose of secure deduplication [28, 112,

49, 2, 51, 10, 50, 91, 106, 98, 3, 65, 58], but in the absence of a theoretical treatment, we

have no precise indication of what these methods do or do not accomplish.

We provide definitions of privacy and integrity peculiar to this domain. A clear,

strong target for design emerges, and we make practical and theoretical contributions.

We analyze existing schemes and new variants, breaking some and justifying

others with proofs in the random-oracle-model. In terms of theoretical contributions,

we address the challenging question of finding a standard-model MLE scheme, making
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connections with deterministic public-key encryption [12], correlated-input-secure hash

functions [70] and locally-computable extractors [8, 88, 107] to provide schemes exhibit-

ing different trade-offs between assumptions made and supported message distributions.

UCE

The random-oracle paradigm of Bellare and Rogaway (BR93) [22] is often used

to prove the security of systems which use cryptographic hash functions, by modelling

those hash functions as random oracles, developing a proof in the presence of such

random oracles (RO), and viewing the realized system as containing an instantiation

of the RO in the form of the hash function. The central and justified critique of the

paradigm [46] is that the instantiated scheme has only heuristic security.

We introduce Universal Computational Extractors (UCEs), an approach for stan-

dard model security of certain random-oracle model constructions. The basic intuition

is that the output of a UCE-secure function looks random even given the key and some

“leakage,” as long as the leakage is appropriately restricted. The approach works by

starting with a random oracle model construction, and instantiating the random oracle

with a family of hash functions. The proof is based on the (standard-model) assumption

that the instantiating function is UCE-secure. We show that UCEs can enable standard

model instantiations of KDM secure encryption schemes and MLE schemes. UCE sup-

ports several applications beyond KDM secure encryption and MLE, as demonstrated in

[18], including deterministic PKE, point-function obfuscation, encryption secure under

related-key attack, and adaptively-secure garbled circuits. However, we do not look at

these applications here, restricting attention to KDM and MLE as applications.
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Preliminaries

We denote the security parameter by λ ∈ N. The length of a string a ∈ {0,1}∗ is

denoted by |a|. We let ε denote the empty string. If s is a string we let s[i] denote its i-th

bit. We denote the concatenation of strings s and t by s‖t. If s is a string and 0≤ `≤ |s|,

then t‖`u← s denotes letting t and u be strings such that |t| = ` and t‖y = s. We let

a←$ A denote picking an element of a finite set A uniformly at random and assigning

it to a. For a,b ∈ N and a ≤ b, we let [a,b] denote the set {a,a+1, . . . ,b}. For ` ∈ N,

the unary representation is given by 1`. The size of a finite set A is denoted by |A|. The

number of coordinates of a vector a is denoted by |a|. Algorithms are randomized unless

otherwise indicated. An adversary is an algorithm or a tuple of algorithms. We say

that a function f : N→ R is negligible if for every polynomial p, there exists np ∈ N

such that f (n)< 1/p(n) for all n > np. The guessing probability g(X) and min-entropy

H∞(X) of a random variable X are defined via g(X) = maxx Pr[X = x] = 2−H∞(X). The

conditional guessing probability GP(X |Y ) and conditional min-entropy H∞(X |Y ) of

a random variable X given a random variable Y are defined via GP(X |Y ) = ∑y Pr[Y =

y] ·maxx Pr[X = x|Y = y] = 2−H∞(X |Y ). By SD(X ;Y ) we denote the statistical distance

between random variables X and Y .

Games

7
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We use the code based game playing framework of [25, 99]. A game G(λ )

(for e.g. Fig. 2.1) consists of a Main procedure, and possibly other procedures, and

begins by executing Main. The Main procedure in turn runs an adversary A after some

initialization steps. The adversary A is executed with oracle access to certain procedures,

and after it finishes executing, the game performs some more steps with the output of the

adversary. Finally, the game exits with some output of its own. Boolean variables are

initialized to false, integers are initialized to 0, strings are initialized to ε , and sets are

initialized to /0. We let GA⇒ y denote the event that an execution of G with A outputs y.

We abbreviate GA⇒ true as GA.

Symmetric encryption

A symmetric encryption (SE) scheme SE = (K,E,D) is a triple of algorithms.

Key generation K produces a key via k←$ K(1λ ), which is a random string of length

κ(λ ) bits. Encryption E encrypts message m ∈ {0,1}µ(λ ) under k to get a cipher-

text c←$ E(1λ ,k,m). Here, c ∈ {0,1}ν(λ ). Decryption D is deterministic and re-

turns m← D(1λ ,k,c) where m ∈ {0,1}µ(λ ) ∪{⊥}. For correctness, we require that

D(1λ ,k,E(1λ ,k,m)) = m for all λ ∈ N for all m ∈ {0,1}µ(λ ) for all k ∈ [K(1λ )] for all

c ∈ E(1λ ,k,m). We say that SE is deterministic if E is deterministic.

The indistinguishability under chosen plaintext attck (IND-CPA) security notion

for SE schemes is defined via game CPAA
SE(λ ) which starts by picking key k←$ K(1λ )

and a bit b←${0,1}. The game then runs adversary A with access to an oracle Enc.

When A makes a call to Enc with inputs m0,m1 ∈ {0,1}µ(λ ), the game computes

c←$ E(1λ ,k,mb) and returns c. The adversary exits with output b′, and the game returns

(b′ = b). We define advantage as Advind-cpaSE,A (λ ) = 2Pr[CPAA
SE(λ )]−1 and say that SE is

CPA-secure if advantage is negligible for all PT A.

The real-or-random (ROR) security notion for SE schemes is defined via game

RORA
SE(λ ) which starts by picking a bit b←${0,1}. The adversary A is then executed
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with access to an oracle Enc. When Enc is invoked with input m ∈ {0,1}µ(λ ), the game

picks k←$ K(1λ ), computes c1←$ E(1λ ,k,m) and c0←${0,1}ν(λ ), and returns cb. The

adversary finishes with output b′, and the game returns (b′ = b). We define advantage

as AdvrorSE,A(λ ) = 2Pr[RORA
SE(λ )]− 1 and say that SE is ROR-secure if advantage is

negligible for all PT A.

Public key encryption

A public-key encryption (PKE) scheme PKE = (K,E,D) is a triple of algorithms.

Key generation K produces public key ek and secret key dk via (ek,dk)←$ K(1λ ). En-

cryption E takes message m∈ {0,1}µ(λ ) and ek to get a ciphertext c←$ E(1λ ,k,m). Here,

c ∈ {0,1}ν(λ ). Decryption D is deterministic and returns a message m← D(1λ ,dk,c)

where m ∈ {0,1}µ(λ )∪{⊥}. For correctness, we require that D(1λ ,dk,E(1λ ,ek,m)) =

m for all λ ∈ N for all m ∈ {0,1}µ(λ ) for all (ek,dk) ∈ [K(1λ )] for all c ∈ [E(1λ ,k,m)].

We say that SE is a deterministic SE scheme (deterministic SE) scheme if E is determin-

istic.

The indistinguishability under chosen plaintext attck (IND-CPA) security no-

tion for PKE schemes is defined via game CPAA
PKE(λ ) which starts by picking keys

(ek,dk)←$ K(1λ ) and a bit b←${0,1}. The game then runs adversary A with ek and ac-

cess to an oracle Enc. When A makes a call to Enc with inputs m0,m1 ∈ {0,1}µ(λ ), the

game computes c←$ E(1λ ,ek,mb) and returns c. The adversary exits with output b′, and

the game returns (b′ = b). We define advantage as Advind-cpaPKE,A (λ ) = 2Pr[CPAA
PKE(λ )]−1

and say that PKE is CPA-secure if advantage is negligible for all PT A. We let PKECPA

denote the set of all CPA-secure PKE schemes.

Authenticated encryption

A symmetric authenticated encryption scheme SE = (K,E,D) is specified by a

key generation algorithm K that returns κ-bit strings, and deterministic encryption and
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decryption algorithms E and D. Inputs to E are a κ(λ )-bit key k, a ρ(λ )-bit nonce n,

a header h ∈ {0,1}∗ and a message m ∈ {0,1}∗, and output is a ciphertext c ∈ {0,1}∗.

Inputs to D are k,n,d,c, and output is a message m ∈ {0,1}∗∪⊥. or ⊥. We refer to κ as

the keylength and ρ(λ ) as the noncelength. The way nonces are handled by the games

defines two kinds of security, namely universal-nonce and random-nonce security. We

require that D(K,n,d,E(K,n,d,M)) = M for all values of the inputs shown. We also

require that E is length respecting in the sense that the length of a ciphertext depends only

on the length of the message and header. Formally, there is a function cl(·, ·) called the

ciphertextl ength such that |c|= cl(|m|, |d|) for any c that may be output by E(·, ·,d,m).

Decryption D takes the nonce and header as an input as in [102, 104]. In this

view, the ciphertext in standard counter-mode encryption does not incude the counter. It

is up to the application to transmit nonce and header if necessary, so the “ciphertext” in

practice may be more than the output of E, but in many settings the receiver gets nonce

and header in out-of-band ways. But our treatment differs from standard ones [15] in that

the nonce must be explicitly provided to D even when it is random. This means that, for

randomized schemes, we are limited to ones that make the randomness public, but this is

typically true. The restriction is only to compact and unify the presentation. Otherwise

we would have needed separate games to treat universal and random nonce security.

Hash functions

A hash function H = (K,H) is a pair of algorithms. Key generation K returns

hk←$ K(1λ ). Hashing is deterministic; it takes input m ∈ {0,1}µ(λ ) and key hk to return

h←H(1λ ,hk,m) where h∈ {0,1}τ(λ ). We refer to µ and τ as the input and hash lengths

of H. Collision resistance for hash functions is defined via game CRA
H(λ ) which works

by picking a key hk←$ K(1λ ) and then running A(1λ ,hk) to get m0,m1. The game then

returns true if (m0 6= m1) and (H(1λ ,hk,m0) = H(1λ ,hk,m1)). We define advantage

AdvcrSE,A(λ ) = Pr[CRA
SE(λ )] and say that H is collision resistant if advantage is negligible



www.manaraa.com

11

for all PT A.

ROM

In the random oracle model (ROM), all procedures of the game and the adversary

get access to a procedure called a random oracle (RO) [22] is a game procedure H that

maintains a table H[·, ·], initially everywhere ⊥. Given a query x,k with x ∈ {0,1}∗ and

k ∈ N, it executes: If H[x,k] = ⊥ then H[x,k]←${0,1}k. It then returns H[x,k]. As this

indicates, the RO can provide outputs of any desired length. We will at times omit the

length when a single value is of import and that length is clear from context. In the ROM,

both scheme algorithms and adversary algorithms will have access to H.
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Key enciphering security

2.1 Introduction

Traditionally, encryption schemes and ciphers have not been designed to remain

secure when encrypting their own keys, and this has been justified based off the view that

encryption of keys does not happen in practice. However, this view is increasingly seen

as careless, and there is a broad consensus in standardization groups, particularly those

involved in disk encryption that building schemes that remain secure when encrypting

their own keys is an important goal.

Disks need length preserving encryption, achived through ciphers. Key enci-

phering security requires that such ciphers can securely encrypt their own key as well

messages containing the key as a substring. While this is not a classical security goal

for ciphers, the Security in Storage Working Group (IEEE P1619), when setting up disk

encryption standards, considered it important and desirable enough that they rejected a

candidate scheme, LRW, due to known key enciphering attacks. The group advocated

key-enciphering security because users or the system may store the key on the disk but

also because, if it would create a vulnerability, an attacker could attempt to manipulate

the system so that it transfers the key from memory to the disk. Overall, they considered

it important enough to reject candidates without the property.

12
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Meanwhile, the group valued security proofs, and chose EME2 [75] to be stan-

dardized. EME2 is a variant of EME [79], a wideblock cipher proven to achieve PRP-

CCA security and it was chosen based on the strength of its security proofs, a host of

efficiency properties, and the presumed security of enciphering the key. If (as seems the

consensus in this domain) key enciphering security is a requirement, and (as also seems

the consensus) proofs are also important, a discrepancy becomes obvious, namely that,

while there is a proof of PRP-CCA security, there is no proof of key enciphering security,

confidence in the latter resting only on the absence of discovered attacks.

All this leads to the problem of finding ciphers to fill this gap, namely efficient

tweakable ciphers, both narrowblock (data is n bits long where n is the blocklength

of the underlying blockcipher) and wideblock (data is mn bits long for m ≥ 2). The

constructions should be not only proven PRP-CCA secure but also proven to securely

encipher data that contains their own keys. In the narrowblock case this means the

message might equal the key, while in the wideblock case it means any block of the

message might equal the key. We explore the question of constructing ciphers with key

enciphering security. We do not want to use random oracles (ROs) but rather want to

prove all this assuming only what was assumed for EME, namely the standard PRP-CCA

security of the underlying blockcipher.

Halevi and Krawczyk [77], also motivated by the concerns and needs of the

Security in Storage Working Group that we have explained, introduced the notions of

KDM secure PRFs and PRPs and asked whether there exist Φ-PRFs or Φ-PRPs for

non-trivial Φ. (Meaning, Φ contains some interesting non-constant function such as the

identity.) They were able to give a standard model construct in the PRF case, but it was

not invertible and thus could not be used for disk encryption. They also gave a PRP but

the proof is in the ideal cipher model. Left open by their work is to provide a Φ-PRP for

non-trivial Φ in the standard model. We resolve this, providing not only constructs, but
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efficient ones, with proofs not only in the standard model but assuming only standard

PRP security of the underlying blockcipher, for non-trivial Φ of practical interest, with

tweaks, and for both the narrow and wide block settings.

Key enciphering security is hard to achieve, as standard reduction techniques

fail completely. The first solutions [29] used ROs. Sophisticated, non-RO solutions

based on novel techniques have emerged [36, 5, 38, 9] but they are far from practical.

Moreover, security for key-dependent data is usually considered for randomized IND-

CPA encryption [29], so that solutions, for instance those provided in the RO model

by [29] are necessarily length increasing.

Disk encryption needs length preserving encryption. The desired primitive is a

tweakable cipher [87], E that deterministically maps an µ(λ )-bit key k, a tweak t ∈ T(λ )

and an ω(λ )-block plaintext m to an ω(λ )-block ciphertext E(1λ ,k, t,m). So µ is both

the keylength and the blocklength. It must be invertible, meaning E(1λ ,k, t, ·) is, for

every k, t, a permutation over {0,1}ω(λ )µ(λ ) whose inverse we denote by E−1(1λ ,k, t, ·).

This is a tweakable blockcipher, or a narrowblock design, if ω(λ ) = 1 for all λ ∈ N, and

a wideblock design otherwise. Both are of interest to the Security in Storage Working

Group, the first under P1619 and the second under P1619.2. In disk encryption the

tweak could be the sector number wideblock or the block index narrowblock and its use

significantly increases security.

Attacks of Halevi and Krawczyk [77] show that, unlike for randomized encryp-

tion [29], there is no cipher that is Φ-PRP-CCA secure for the class Φ of all functions.

To achieve security, we must restrict the class somehow. The restriction we make, namely

to consider encrypting the key, results in a class capturing practical attacks for which we

will show security to be achievable.

We first provide StE, a simple and efficient transform that, applied to any tweak-

able PRP-CCA blockcipher, results in a tweakable narrowblock cipher that is not only
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proven PRP-CCA but also proven to securely encipher its own key, assuming only PRP-

CCA security of the starting tweakable blockcipher. We then use StE as the basis for

EtE, a transform that, applied to any tweakable PRP-CCA wideblock cipher, results

in another tweakable wideblock cipher that, again, is not only proven PRP-CCA but

also proven to securely encipher data containing its own key in any block, assuming

only PRP-CCA security of the starting wideblock tweakable cipher and of the tweakable

blockcipher underlying StE.

In terms of concrete instantiations, we implemented EtE with AES as the base

blockcipher, tweaked via XEX [101], and with EME as the base wideblock cipher. We

implemented this with the AES-NI instruction set. We found that EtE is only 15% slower

than plain EME.

Defining key enciphering security

The standard security notion for a (tweakable) cipher is to be PRP-CCA se-

cure [87]. This is sometimes called strong PRP security following the terminology of

[89]. We extend this to key dependent messages (KDM), defining what it means for

E to be Φ-PRP-CCA secure where Φ is a class of functions that map µ(λ )-bit keys

to ω(λ )µ(λ )-bit inputs, following [29, 77]. The game picks a random challenge bit

b, a random key k and a random permutation π(t, ·): {0,1}ω(λ )µ(λ )→ {0,1}ω(λ )µ(λ )

for each t. It gives the adversary the standard oracles Fn,Fn−1 from the PRP-CCA

game and a new oracle KDFn. Oracle Fn, on input t,m, returns E(1λ ,k, t,m) if b = 1

and π(t,m) otherwise; oracle Fn−1, on input t,c, returns E−1(1λ ,k, t,c) if b = 1 and

π−1(t,c) otherwise; oracle KDFn, on input φ , t, where φ is required to be in Φ, returns

E(k, t,φ(k)) if b = 1 and π(t,φ(k)) otherwise. To ensure non-triviality, the adversary is

required to be legitimate, meaning does not query Fn−1(t,c) for a c previously received

as a response to a KDFn(t, ·) query. The adversary advantage is 2Pr[b = b′]−1 where

b′ is its output bit. Φ-PRP-CCA security obviously implies PRP-CCA security for all Φ,



www.manaraa.com

16

and coincides with it when Φ = /0.

What we mean by “encrypting the key” depends on whether the design is narrow-

block or wideblock. In the narrowblock case, we are concerned with the obvious, namely

that the message equals the key, captured formally by letting Φ consist of the identity

function id. For wideblock designs, we seek security when any block of the message

equals the key. This reflects P1619.2 requirements. We clarify that the key may occur

in multiple blocks but may not overlap between blocks. Thus if m = m[1] . . .m[ω(λ )]

is the message then m[i] may equal the key k for any i but we do not allow k to start

somewhere in one block and end somewhere in the next block. In Section 2.4 we specify

a Φ, that we denote idω , that captures this formally.

Approach

First we address the narrowblock case, providing a transform StE that turns a

given PRP-CCA tweakable blockcipher into a {id}-PRP-CCA tweakable blockcipher,

meaning the constructed cipher not only preserves the PRP-CCA security of the base one

but, assuming only PRP-CCA security of the latter, is proven to securely encrypt its key.

StE is of interest in its own right as the first (tweakable) blockcipher that can provably

encipher its own key under standard and minimal assumptions.

We would have liked to show that instantiating the base blockcipher of E of

EME [79] with F = StE[E] results in a wideblock cipher that can provably encipher its

own key, but this does not work. Instead, we show how to add a pre-processing step to

EME, or any other PRP-CCA secure wideblock cipher, to get another wideblock cipher

that now, when instantiated with F as the underlying blockcipher, is idω -PRP-CCA

secure, meaning not only PRP-CCA secure but able to securely encipher messages that

contain the key in any block. We now look at these two contributions closely.

Narrowblock design
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Our starting point is a suggestion of [36] to securely encrypt keys with a ran-

domized encryption scheme by exchanging the key with another point. To make this

work for deterministic encryption we swap with a “hidden” point, the latter determined

by encryption under the key of a constant. A crucial idea is to use tweaks, defining the

hidden point via a tweak not used for anything else.

We take a tweakable blockcipher E with block and key length µ , and tweakspace

T, assumed to have normal, meaning PRP-CCA, security, but not necessarily able to

securely encrypt its key. We pick an arbitrary tweak γλ ∈T(λ ) for E and also an arbitrary

point α ∈ {0,1}µ(λ ). We usually drop the subscript λ in γλ and refer to it as γ . Both α

and γ are public and known to the adversary. Our StE (Swap-then-Encipher) transform

now turns E into another tweakable blockcipher F with the same block and key lengths,

and a modified tweakspace T′ where T′(λ ) = T(λ )\{γλ}. We define F via

F(1λ ,k, t,m)

h← E(1λ ,k,γ,α)

If m = k then y← E(1λ ,k, t,h)

Else If m = h then y← E(1λ ,k, t,k)

Else y← E(1λ ,k, t,m)

Return y

In Section 2.3 we show that F is invertible, as required to be a cipher. A curious aspect

of the design is that at the third line we actually encrypt the key k with the original

blockcipher E. Given that the latter may not necessarily be able to securely encrypt its

key, why would this work? The answer is that we only do this if m = h and we ensure

the latter is very unlikely. Thus h is our “hidden” point.

Making sure h is hidden takes some care. It is not so merely because its computa-

tion depends on k, for the adversary will have an oracle that (at least in the real game)
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allow it to compute F under k for any tweak of the adversary’s choice and this might

be used to extract information about h. The crucial point is that γ , the tweak used in

computing h, was removed from the tweak space of F so the adversary cannot use it.

The proof that F securely encrypts its key is done by reduction to the assumed

PRP-CCA security of E and is delicate due to the cyclic nature of the construction. It is

crucial for disk encryption that F is invertible. It is to ensure this that we need the swap

that effectively exchanges the roles of k and h.

At first glance it would appear that StE doubles the cost since it requires two

invocations of E, one to get h and the other to get y. This, however, is also true of

XEX-AES [101]: presented as a fast tweakable blockcipher, XEX actually requires two

invocations of the underlying blockcipher. In both cases, however, the answer is the same,

namely that the ciphers will be used in a mode where the extra blockcipher computation

is done once and its cost is thus amortized out so that the effective cost of the cipher is

one blockcipher call. Specifically if F, like XEX-AES, is used as the base blockcipher

in a wideblock design to encipher a sector consisting of F blocks (eg. F = 32), we can

compute h just once across the F encipherings so StE effectively involves just a single

blockcipher invocation.

The IEEE 1619 standard for narrowblock ciphers is based on XEX-AES [101].

StE is easily applied here, yielding an alternative narrowblock candidate that is as efficient

as the current one when the cost of computing H is amortized out, but also has provable

security for enciphering the key.

Wideblock design

EME [79] is a wideblock tweakable cipher that is proven PRP-CCA secure

assuming only PRP-CCA security of the underlying blockcipher. It makes two passes

through the data and runs at 2 blockcipher invocations per message block. One of its

attractions, and its advantage over the earlier CMC [78], is that it is parallelizable. No
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attack is known when one encrypts messages containing the key in any block, but nor is

there any proof that such an attack is absent.

We wish to enhance designs like EME so that PRP-CCA security is preserved

but provable key enciphering security is also added, without assuming any more of the

underlying blockcipher than PRP-CCA security. Our EtE transform does just this. It

makes an ECB pass through the data using F = StE[E] under one tweak and then applies

any wideblock PRP-CCA cipher (EME would be one possibility) using F with another

tweak. We prove that the resulting cipher is idω -PRP-CCA secure assuming only that

tweakable blockcipher E is PRP-CCA secure. Thus EtE provides a generic way to

upgrade any PRP-CCA wideblock cipher to also be able to securely encipher messages

containing the key in any block, at the cost of one extra blockcipher operation per block.

The design preserves parallelizability, so that when instantiated with a parallelizable

wideblock cipher like EME, the resulting cipher is also parallelizable.

Instantiation and implementation

Getting the best out of EtE requires good choices for the underlying components

and some optimizations. We use AES as the base blockcipher and XEX [101] to tweak

it. We use EME as the wideblock cipher. Let J denote the resulting wideblock cipher

as produced by EtE. We implemented J, as well as plain EME for comparison. Our

experiments show that J is only 15% slower than EME.

Recall that EME uses about two blockcipher calls per message block. Since J

would thus use three blockcipher calls per message block, one might naively expect a 50%

slowdown. However, EME computes various offsets that are added to the blockcipher

inputs and outputs, and these computations are quite costly, so our simple ECB pass

is less expensive compared to EME than one might imagine. We remark that AES-NI

is now widely available in Intel and AMD processors on modern machines, and disk

controllers might potentially have hardware AES support as well, so using AES-NI as a
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starting point is realistic.

2.2 Preliminaries

Tweakable blockciphers

A tweakable blockcipher [87] with block length µ , key length κ and tweak space

T is a map E(1λ , ·, ·, ·): {0,1}κ(λ )×T(λ )×{0,1}µ(λ )→ {0,1}µ(λ ) that takes input a

κ(λ )-bit key k, a tweak t drawn from the tweakspace T(λ ) and a µ(λ )-bit message m to

return an µ(λ )-bit output E(1λ ,k, t,m). The map E(1λ ,k, t, ·): {0,1}µ(λ )→{0,1}µ(λ )

that on input m ∈ {0,1}µ(λ ) returns E(1λ ,k, t,m) is required to be a permutation and its

inverse is denoted E−1(1λ ,k, t, ·).

The standard notion of security for a tweakable blockcipher is to be a tweakable

pseudorandom permutation [87]. This can be considered under either chosen-plaintext

attack (usually called PRP security) or chosen-ciphertext attack (usually called strong

PRP security) [87, 89], but we will use the terms PRP-CPA and PRP-CCA as more

indicative of the models and more consistent with notation for other primitives. We will

be working with PRP-CCA. To define it consider games RealE and RandE of Fig. 2.1.

In Rand, we are denoting by TwPm(T,{0,1}µ(λ )) the set of all π: T×{0,1}µ(λ )→

{0,1}µ(λ ) such that π(t, ·) is a permutation on {0,1}µ(λ ) for each t ∈ T(λ ). In this

case, π−1(t, ·): {0,1}µ(λ )→ {0,1}µ(λ ) is the inverse of π(t, ·). We define the prp-cca

advantage of A as

Advprp-ccaE,A (λ ) = Pr[RealAE(λ )]−Pr[RandA
E(λ )].

We extend PRP-CCA to allow for the encryption of key-dependent messages

via games RealE,Φ and RandE,Φ of Figure 2.1. Oracle KDFn takes input a tweak

t and a function φ ∈ Maps({0,1}κ(λ ),{0,1}µ(λ )) and derives m as φ(K). If Φ ⊆
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Main RealAE(λ )

k←${0,1}κ(λ ); S← /0
b←$ AFn,Fn−1

(1λ ); Return (b = b′)

Main RealAE,Φ(λ )

k←${0,1}κ(λ ); S← /0
b←$ AFn,Fn−1,KDFn(1λ ); Return (b = b′)

proc Fn(t,m)

S← S∪ (t,m); Return E(1λ ,k, t,m)

proc Fn−1(t,c)

m← E−1(1λ ,k, t,c)
If (t,m) ∈ S then return ⊥ else return m

proc KDFn(t,φ)

m← φ(k); S← S∪ (t,m)

Return E(1λ ,k, t,m)

Main RandA
E(λ )

k←${0,1}κ(λ ); S← /0
π←$TwPm(T,{0,1}µ(secp))

b←$ AFn,Fn−1
(1λ ); Return (b = b′)

Main RandA
E,Φ(λ )

k←${0,1}κ(λ ); S← /0
π←$TwPm(T,{0,1}µ(secp))

b←$ AFn,Fn−1,KDFn(1λ ); Return (b = b′)

proc Fn(t,m)

S← S∪ (t,m); Return π(t,m)

proc Fn−1(t,c)

m← π−1(t,c)
If (t,m) ∈ S then return ⊥ else return m

proc KDFn(t,φ)

m← φ(k); S← S∪ (t,m); Return π(t,m)

Figure 2.1. Games defining PRP-CCA and KDM PRP-CCA security of tweakable
blockcipher E with key length κ and block length µ .

Maps({0,1}k,{0,1}µ(λ )) we say that adversary A is Φ-restricted if the argument φ

in its KDFn queries is always from Φ(λ ). We define the Φ-kdm-prp-cca advantage of

such an A to be

Advprp-ccaE,Φ,A (λ ) = Pr[RealAE,Φ(λ )]−Pr[RandA
E,Φ(λ )].

We continue, thus, to denote the notion via prp-cca, the key-dependent messages indicated

by the extra subscript Φ in the advantage function.

Consider the following strategy for A. It makes KDFn query t, id to get back a

ciphertext c and then queries Fn−1(t,c). The response will be m = id(k) = k, and now

A has the key and can easily win. (That is, get a high advantage, for example by returning
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1 if E(k, t,m′) = Fn(t,m′) for some t and some m′ 6= m, and 0 otherwise.) To preclude

this, we require that A is legitimate, meaning that, for all t,φ , it never makes a Fn−1(t,c)

query for c previously received in response to a KDFn(t,φ) query. The analogy is

the definition of IND-CCA secure encryption where the adversary is not allowed to

query to the decryption oracle a ciphertext it previously received as a challenge. The

(necessary) assumption that adversaries are legitimate is made throughout and is implicit

in all our results. We remark that we do not need to prohibit A from query Fn−1(t,c)

for c previously returned in response to query Fn(t,m), because A already knows the

message M it would get as response. So no restriction is present in the plain prp-cca

notion. But when key-dependent messages are introduced, we must require legitimacy.

KDM-secure IND-CPA encryption was defined by [29]. Subsequently, KDM

security of tweakable blockciphers was defined by Halevi and Krawczyk [77]. Because

blockciphers, unlike encryption schemes, are deterministic, KDM security is not achiev-

able when arbitrary functions φ are allowed in KDFn queries. This is analogous to what

happens with related-key attacks (RKAs) and thus, as with the formalization of RKA

security from [20], Halevi and Krawczyk [77] parameterize the advantage and definition

of KDM security for tweakable blockciphers by a class Φ of functions. Our narrow-block

design StE will achieve security when Φ = {id}, corresponding to encrypting the key.

Our extended cipher GStE will achieve security for a broader class Φ and our wideblock

design for Φ corresponding to any block of the message equaling the key.

Halevi and Krawczyk [77] do not explicitly state the legitimacy condition. They

also allow the possibility of decryption of key-dependent ciphertexts, via an extra oracle.

We have not considered this capability because, while plaintexts may be key dependent,

we did not see why ciphertexts would be key dependent. Our schemes do not aim to

achieve security in the presence of decryption of key-dependent ciphertexts.
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2.3 Narrowblock Cipher

In this section we show how to construct a narrowblock tweakable blockcipher that can

securely encipher its own key.

Construction

Let E be a tweakable blockcipher with key length and block length µ : N→ N

and tweakspace T. We fix an arbitrary tweak γλ ∈ T(λ ) as well as an arbitrary message

αλ ∈ {0,1}µ(λ ). Both γλ and αλ are public parameters of the system known to the

adversary. Our Swap-then-Encipher transform StEγ,α associates to E another tweakable

blockcipher F = StEγ,α [E] with the key length and block length µ , with tweakspace T′

such that T′(λ ) = T′(λ )\{γλ}. The function F is defined as follows:

F(1λ ,k, t,m)

01 h← E(1λ ,k,γλ ,αλ )

02 If m = k then y← E(1λ ,k, t,h)

03 Else If m = h then y← E(1λ ,k, t,k)

04 Else y← E(1λ ,k, t,m)

05 Return y

Before considering security, We establish that F is invertible as required to be a tweakable

blockcipher. Indeed, the inverse F−1 is given by

F−1(1λ ,k, t,c)

01 y← E−1(1λ ,k, t,c)

02 h← E(1λ ,k,γλ ,αλ )

03 If y = k then m← h

04 Else If y = h then m← k

05 Return m
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Efficiency

In the form it is described above, evaluating F requires two calls to the underlying

cipher E. But in practice we are enciphering a message consisting of multiple blocks. In

this case the value E(1λ ,k,γλ ,αλ ) can be computed just once and then cached, which

means each evaluation of F(1λ ,k, t,m) requires one call to E with the same key and

tweak value. Similarly, E(1λ ,k,γλ ,αλ ) can also be cached for inversion. Thus, the

amortized cost of StEγ,α is the same as that of E. We remark that the situation here

is analogous to that of XEX [101]. XEX too needs two applications of the underlying

blockcipher, but one can usually be amortized out. StE is no worse.

Security

The following theorem says that F = StEγ,α [E] is a PRP-CCA that can securely

encipher its own key, or more formally, that it is {id}-kdm-prp-cca secure, assuming only

that E meets the standard PRP-CCA notion of security.

Theorem 2.3.1 Let E be a tweakable blockcipher with key length and block length µ

and tweak space T. Let γ and α be a sequence of points such that γλ ∈ T(λ ) and

αλ ∈ {0,1}µ(λ ). Let F = StEγ,α [E] be the tweakable blockcipher associated to E via

StE as defined above. Let Φ = {id} consist of the identity function. Let A be an adversary

making at most Q : N→ N oracle queries. Then there is an adversary B such that

Advprp-ccaF,Φ,A (λ ) < 2 ·Advprp-ccaE,B (λ )+
3Q(λ )

2µ(λ )−1
.

Moreover, the running time of B is about equal to the running time of A.

The intuition is that, during the RealF,{id} and RandF,{id} games, an adversary is unlikely

to trigger the test in lines 02 and 03 in the computation of F , except by submitting φ = id

to its oracle. Once this established, we can give a reduction to the prp-cca security of E.
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For the first part, we show that k and h are hard to guess using the prp-cca security of E.

If the adversary guesses k, then we can show how to break the prp-cca security of E, a

contradiction. We can show the same if the adversary guesses h. This is where we use

the fact that the tweak γλ is never allowed elsewhere, effectively making h look random.

The proof implements this approach and deals with other complications.

Main // G0,G1

k←${0,1}κ(λ ); h← E(1λ ,k,γλ ,αλ )

b′←$ AFn,Fn−1,KDFn(1λ ); Return (b′ = 1)

proc Fn(t,x) // G0 , G1

If m = k then bad← true; x← h
Else If m = h then bad← true; x← k

Return E(1λ ,k, t,x)

proc KDFn(t,φ) // G0,G1

Return E(1λ ,k, t,h)

proc Fn−1(t,c) // G0 , G1

X ← E−1(1λ ,k, t,c); m← X
If X = k then bad← true; m← h
Else If X = h then bad← true; m← k
Return m

Main // G2

π←$ TwPm(T,{0,1}µ(λ ))
h← π(γλ ,αλ )

b′←$ AFn,Fn−1,KDFn(1λ )
Return (b′ = 1)

proc Fn(t,m) // G2

Return π(t,m)

proc KDFn(t,φ) // G2,G4

Return π(t,h)

proc Fn−1(t,c) // G2

Return π−1(t,c)

Figure 2.2. Games used in the proof of Theorem 2.3.1.

Proof: We begin with the games in figures Fig. 2.2 and Fig. 2.2. Recall that here

Φ = {id}, so it is assumed that φ = id in any KDFn query. Game G0 includes the boxed

code and hence is the same as RealAF , and thus we have

Advprp-ccaF,Φ,A (λ ) = Pr[GA
0 (λ )]−Pr[GA

2 (λ )]

= Pr[GA
1 (λ )]−Pr[GA

2 (λ )]+Pr[GA
0 (λ )]−Pr[GA

1 (λ )]

≤ Pr[GA
1 (λ )]−Pr[GA

2 (λ )]+Pr[Bad(GA
1 (λ ))] .
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Main // G3

k←${0,1}µ(λ )

h← E(1λ ,k,γλ ,αλ )

h′← E(1λ ,k,γλ ,α
′
λ
)

b′←$ AFn,Fn−1,KDFn(1λ )
Return (bad1∨bad2)

Main // G4

π←$ TwPm(T,{0,1}µ(λ ))
h← π(γλ ,αλ )
h′← π(γλ ,α

′
λ
)

b′←$ AFn,Fn−1,KDFn(1λ )
Return (bad1∨bad2)

proc KDFn(t,φ) // G3

Return E(1λ ,k, t,h)

proc Fn(t,m) // G3

If E(1λ ,m,γλ ,α
′
λ
) = h′ then bad1← true

Else If m = h then bad2← true

Return E(1λ ,k, t,m)

proc Fn−1(t,c) // G3

m← E−1(1λ ,k, t,c)
If E(1λ ,m,γλ ,α

′
λ
) = h′ then bad1← true

Else If m = h then bad2← true
Return m

proc Fn(t,m) // G4

If E(1λ ,m,γλ ,α
′
λ
) = h′ then bad1← true

Else If m = h then bad2← true
Return π(t,m)

proc Fn−1(t,c) // G4

m← π−1(t,c)
If E(1λ ,m,γλ ,α

′
λ
) = h′ then bad1← true

Else If m = h then bad2← true
Return m

Figure 2.3. Games G3 and G4 used in the proof of Theorem 2.3.1.

The inequality is by the Fundamental Lemma of Game Playing [25] since G0,G1 are

identical until bad. We design adversary B1 so that

Pr[GA
1 (λ )]−Pr[GA

2 (λ )]≤ Advprp-ccaE,B1
(λ ) . (2.1)

The simulation is straightforward since G1 does not include the boxed code. B1 has

oracles Fn,Fn−1. It starts by letting h← Fn(γλ ,αλ ). It then runs A. When A makes a

query (t,m) to its Fn oracle, B1 queries its own Fn oracle with (t,m) and forwards the

response to A. Similarly when A makes a query (t,c) to its Fn−1 oracle, B1 queries its

own Fn−1 oracle with (t,c) and forwards the response to A. When A queries its KDFn

oracle with t, id, adversary B1 responds with Fn(t,h). When A halts with output b′, so
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does B1. We clearly have

Pr[RealB1
E (λ )] = Pr[GA

1 (λ )] .

Since the tweak γλ is not used in any queries of A, the point h in G2 is random and can

be viewed as playing the role of k in game RandE . Thus we also have

Pr[RandB1
E (λ )] = Pr[GA

2 (λ )] .

Thus we have Equation (2.1). It remains to upper bound Pr[Bad(GA
1 )(λ )]. Fix a point

α ′
λ
∈ {0,1}µ(λ ) \ {αλ} and consider games G3,G4 of Fig. 2.3. Game G3 replaces the

m = k test from G1 with the test E(1λ ,m,γλ ,α
′
λ
) = h′. The purpose is to avoid referring

explicitly to k, thereby opening the way for a reduction to the assumed prp-cca security

of E. This new test, however, will certainly return true if m = k and hence

Pr[Bad(GA
1 (λ ))] ≤ Pr[GA

3 (λ )]

= Pr[GA
3 (λ )]−Pr[GA

4 (λ )]+Pr[GA
4 (λ )] .

We stress that in G4, where we move to the random world by replacing E(1λ ,k, ·, ·) by

π(·, ·), the test still uses E, invoking the blockcipher here explicitly on inputs m,γλ ,α
′
λ

.

(The test does not use π .) We design adversary B2 so that

Pr[GA
3 (λ )]−Pr[GA

4 (λ )]≤ Advprp-ccaE,B2
(λ ) . (2.2)

The simulation is again straightforward now that k is not referred to explicitly in either

game. B2 has oracles Fn,Fn−1. It starts by letting h←Fn(γλ ,αλ ) and h′←Fn(γλ ,α
′
λ
)



www.manaraa.com

28

and initializing boolean variables bad1,bad2 to false. It then runs A. When A makes a

query (t,m) to its Fn oracle, B2 does the following:

If E(1λ ,m,γλ ,α
′
λ
) = h′ then bad1← true

Else If m = h then bad2← true

Return Fn(t,m) to A

Similarly when A makes a query (t,c) to its Fn−1 oracle, B2 does the following:

m← Fn−1(t,c)

If E(1λ ,m,γλ ,α
′
λ
) = h′ then bad1← true

Else If m = h then bad2← true

Return m to A

When A queries its KDFn oracle with t, id, adversary B responds with Fn(t,h). When

A halts with output b′, adversary B halts with output 1 if (bad1∨bad2) has value true

and 0 otherwise. We have

Pr[RealB2
E (λ )] = Pr[GA

3 (λ )] and Pr[RandB2
E (λ )] = Pr[GA

4 (λ )]

which implies Equation (2.2). Let B be the adversary that picks c at random from {1,2}

and runs Bc. Then at this point we have

Advprp-ccaF,Φ,A (λ )≤ 2 ·Advprp-ccaE,B (λ )+Pr[GA
4 (λ )]

and proceed to upper bound the last term above, considering separately the probability of

setting bad1 and that of setting bad2. Since γλ is not in the tweak space of F , game G5

of Fig. 2.4 picks π from TwPm(T\{γλ},{0,1}µ(λ )) rather than TwPm(T,{0,1}µ(λ )),

and picks h,h′ as random, distinct points. The game can move the setting of bad1 and
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Main // G5(λ )

π←$ TwPm(T\{γλ},{0,1}µ(λ ))

h←${0,1}µ(λ ); S← /0

h′←${0,1}µ(λ ) \{h}
AFn,Fn−1,KDFn(1λ )
Return (h′ ∈ S)

proc Fn(t,m) // G5

S← S∪{E(1λ ,m,γλ ,α
′
λ
)}

Return π(t,m)

proc KDFn(t,φ) // G5

Return π(t,h)

proc Fn−1(t,c) // G5

m← π−1(t,c)
S← S∪{E(1λ ,m,γλ ,α

′
λ
)}

Return m

Main // G6,G7

For all t ∈ T\{γλ} do
yt←${0,1}µ(λ ); R(t)←{yt}

h←${0,1}µ(λ ); AFn,Fn−1,KDFn(1λ )
Return bad

proc Fn(t,m) // G6 , G7

If π[t,m] then return π[t,m]

c←${0,1}µ(λ ) \R(t)
If m = h then bad← true; c← yt
D(t)← D(t)∪{m}; R(t)← R(t)∪{c}
π[t,m]← c; π−1[t,c]← m
Return π[t,m]

proc KDFn(t,φ) // G6,G7

Return yt

proc Fn−1(t,c) // G6 , G7

If π−1[t,c] then return π−1[t,c]
m←${0,1}µ(λ ) \D(t)
If c = yt then bad← true; m← h
Else If m = h then

bad← true

m←${0,1}µ(λ ) \ (D(t)∪{h})
D(t)← D(t)∪{m}; R(t)← R(t)∪{c}
π[t,m]← c; π−1[t,c]← m
Return m

Figure 2.4. Games G6 and G7 used in the proof of Theorem 2.3.1.

the choice of h′ to Finalize without impacting what is returned to the adversary. At the

end of the execution, the set S can have size at most Q(λ ) so

Pr[GA
4 (λ ) sets bad1] = Pr[GA

5 (λ )]≤
Q(λ )

2µ(λ )−1
.

Bounding the probability that bad2 is set in G4 is more difficult because information

about h does reach the adversary via the KDFn query. Our intent is to move to a game

where h is not referred to in replying to adversary oracle queries. We begin with game G6

of Fig. 2.4 which samples π lazily. The arrays π[·, ·] and π−1[·, ·] are assumed initially
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Main // G8

For all t ∈ T\{γλ} do
yt←${0,1}µ(λ ); R(t)←{yt}

S← /0

h←${0,1}µ(λ ) ; AFn,Fn−1,KDFn(1λ )
Return (h ∈ S)∨bad

proc Fn(t,m) // G8

If π[t,m] then return π[t,m]

c←${0,1}µ(λ ) \R(t) ; S← S∪{m}
D(t)← D(t)∪{m} ; R(t)← R(t)∪{c}
π[t,m]← c; π−1[t,c]← m
Return π[t,m]

proc KDFn(t,φ) // G8

Return yt

proc Fn−1(t,c) // G8

If π−1[t,c] then return π−1[t,c]
m←${0,1}µ(λ ) \D(t)
If c = yt then bad← true
Else S← S∪{m}
D(t)← D(t)∪{m}
R(t)← R(t)∪{c}
π[t,m]← c; π−1[t,c]← m
Return m

Figure 2.5. Game G8 used in the proof of Theorem 2.3.1.

everywhere undefined, and get filled in as the game progresses. A test “If π[t,m]” returns

true if π[t,m] is defined, and false otherwise, and similarly for “If π−1[t,c]”. The game

begins by picking a random yt for each t that is intended to stand for π[t,h] but not

assigned to the latter so as to avoid using h. Instead, whenever π[t,h] or π−1[t,yt ] are

called for, the game sets bad and corrects via the boxed code, which is included in G6. A

variant of the Fundamental Lemma of Game Playing from [25] says that identical until

bad games have the same probability of setting bad and hence

Pr[GA
4 (λ ) sets bad2] = Pr[GA

6 (λ )] = Pr[GA
7 (λ )] .

But game G7, which excludes the boxed code, does not refer to h in replying to adversary

oracle queries, and hence

Pr[GA
7 (λ )] = Pr[GA

8 (λ )] .

Since A is legitimate, a Fn−1(t,c) query with c = yt must occur before it receives yt from

KDFn and hence is made with no knowledge of yt . Thus the probability that a query
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of A sets bad is at most 2−µ(λ ). We remark that this is the place we use the assumption

that A is legitimate, without which bad could be set with probability one. On the other

hand the set S has size at most Q(λ ) at the end of the execution of A with the game. So

Pr[GA
8 (λ )]≤ 2Q(λ ) ·2−µ(λ ). Putting this together with the above concludes the proof.

The IEEE 1619 standard for narrowblock ciphers is based on AES over XEX [101].

StE is an alternative narrowblock candidate that is essentially as efficient as the current

one but also has provable security for enciphering the key.

2.4 Wideblock cipher

In this section, we provide a simple and general way to enhance a given PRP-CCA

wideblock cipher to be able to encrypt messages that might, in any block, contain the key.

Our construction simply puts an ECB layer in front of the given cipher and then uses

StE as the base tweakable blockcipher for both the ECB pass and the application of the

wideblock cipher. This works for any given wideblock cipher that is a mode of operation

of a blockcipher, meaning it uses the key only to key an underlying blockcipher, as is the

case with EME and other standard designs. StE is used with one tweak for the ECB pass

and then, by fixing a different tweak, yields a blockcipher to instantiate the wideblock

mode of operation.

We begin, below, by defining what it means for a wideblock design to be a mode

of operation and what it means to assume it is PRP-CCA secure. Then we provide our

construction and prove it secure.

Modes

A wideblock mode of operation WB = (WB,WB−1) is a pair of oracle algo-

rithms. Given oracle access to a permutation g: {0,1}µ(λ )→{0,1}µ(λ ), algorithm WB

takes input a tweak t ∈ T and an ω(λ )-block message x ∈ {0,1}ω(λ )µ(λ ) to return an
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ω(λ )-block ciphertext denoted WB(t,x :g). Given oracle access to g−1, algorithm WB−1

takes input a tweak t ∈ T and an ω(λ )-block ciphertext y ∈ {0,1}mn to return an ω(λ )-

block message denoted WB−1(t,y:g−1). It is required that WB−1(t,WB(t,x:g):g−1) = x

for all choices of the inputs and oracles. Here T,µ,ω are the tweak space, blocklength

and number of blocks associated to WB.

If N is a blockcipher with κ-bit keys and µ-bit inputs then WB associates to

it a tweakable blockcipher W = WB[N] where W has key length κ , tweak space T

and input and output lengths {0,1}ω(λ )µ(λ ) is defined by W (k, t,x) = WB(t,x :E(k, ·))

and W−1(k, t,y) = WB−1(t,y :E−1(k, ·)). EME is an example of a wideblock mode of

operation that, in this way, transforms a given blockcipher into a wideblock tweakable

cipher. Let WB = (WB,WB−1) be a wideblock mode of operation. Consider the games

of Fig. 2.6 and let

Advprp-ccaWB,B (λ ) = Pr[ROB
WB(λ )]−Pr[RandB

ω(λ )µ(λ )(λ )] .

Game ROWB instantiates the oracles of WB and WB−1 with a random narrow block

permutation and its inverse, respectively, while game Randmn responds to oracle queries

via a random wideblock permutation. Now let

Advprp-ccaWB,Q,µ,ω,τ(λ ) = max
B

Advprp-ccaWB,B (λ )

where the maximum is over all adversaries B making at most Q : N→ N oracle queries

with the tweak argument in each query having length at most µ(λ )τ(λ ). Proving security

of a mode of operation ubiquitously proceeds by upper bounding this advantage as a

function of Q,µ,ω,τ . This is a purely information theoretic setting, and absolute bounds

are provided. For example, for EME, it is shown in [79] that this advantage is at most
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Main // ROWB
π←$ Pm({0,1}ω(λ ))

b′←$ AFn,Fn−1
(1λ )

Return (b′ = 1)

proc Fn(t,m) // ROWB
Return WB(t,m :π)

proc Fn−1(t,c) // ROWB

Return WB−1(t,c :π−1)

Main // Randµ(λ )ω(λ )

π←$ TwPm(T,{0,1}µ(λ )ω(λ ))

b′←$ AFn,Fn−1
(1λ )

Return (b′ = 1)

proc Fn(t,m) // Randµ(λ )ω(λ )

Return π(t,m)

proc Fn−1(t,c) // Randµ(λ )ω(λ )

Return π−1(t,c)

Main // J
π←$ TwPm(T,{0,1}µ(λ )) ; K←${0,1}κ(λ )

b′←$ AFn,Fn−1,KDFn(1λ ); Return (b′ = 1)

proc Fn(t,m) // J
Return π(t,m)

proc KDFn(t, idm) // J
For i = 1, . . . ,m do

If m[i] =⊥ then m[i]← k
Return π(t,m)

proc Fn−1(t,c) // J
Return π−1(t,c)

Figure 2.6. On the top are games ROWB,Randmn to define security of wideblock mode
of operation WB = (WB,WB−1). On the bottom is the final game J for the proof of
Theorem 2.4.1.

7(Q(λ )τ(λ )+Q(λ )µ(λ )+ 1)2/2µ(λ ). EME requires µ(λ ) ≤ ω(λ ), assumed in this

bound. PRP-CCA security of WB[N] follows from the assumption that N is a PRP-CCA

secure blockcipher by a standard reduction argument.

Construction

Let ECB denote the oracle algorithm that given oracle access to a permutation

g: {0,1}µ(λ )→{0,1}µ(λ ), and given a input m = m[1] . . .m[ω(λ )], returns the ω(λ )-bit

string c= ECB(m:g) defined by c[i] = g(m[i]) for 1≤ i≤ω(λ ). Let WB= (WB,WB−1)

be a wideblock mode of operation with tweakspace T, blocklength µ and number of

blocks ω . Let F be a blockcipher with block size and key size µ and a tweak space T

with T(λ ) = {γ1
λ
,γ2

λ
} be a tweakable blockcipher with a tweakspace of size two. (Of
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course, any tweakable blockcipher with an even larger tweakspace will do. Just drop all

but two possible tweaks.) Our EtE (ECB-then-encipher) transform associates to WB and

F a tweakable wideblock cipher J = EtE[WB,F] where J has key length µ and input

length µ(λ )ω(λ ) and tweak space T and is defined as follows:

J(1λ ,k, t,m)

01 x← ECB(m :F(1λ ,k,γ1
λ
, ·))

02 y←WB(t,x :F(1λ ,k,γ2
λ
, ·))

03 Return y

The inverse is defined by

J−1(k, t,y)

01 x←WB−1(t,y :F−1(1λ ,k,γ2
λ
, ·))

02 m← ECB(x :F−1(1λ ,k,γ1
λ
, ·))

03 Return m

We take advantage here of the fact that ECB(· :g−1) is the inverse of ECB(· :g). When

instantiated with EME in the role of WB this uses three blockcipher invocations per

block, but retains the parallelizability of EME. F would be obtained by applying StE to

some tweakable blockcipher with a tweakspace of size three.

The class idω

We formally define the class Φ capturing occurrence of the key in any block

of the message. Associate to any ω(λ )-vector m over {0,1}µ(λ ) ∪{⊥} the function

idm: {0,1}µ(λ )→{0,1}µ(λ )ω(λ ) that on input a key k ∈ {0,1}µ(λ ) returns the message

m′ = m′[1] . . .m′[ω(λ )] defined by m′[i] = m[i] if m[i] 6=⊥ and m′[i] = k if m[i] =⊥ for

all 1 ≤ i ≤ ω(λ ). Then idω is the class of all idm as m ranges over all m-vectors over

{0,1}µ(λ )∪{⊥}. This is the class Φ we will consider.
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Security

Assume WB is PRP-CCA secure and assume F is {id}-PRP-CCA secure, mean-

ing can safely encrypt its own key. We claim that J is idm-PRP-CCA secure, meaning

can safely encrypt messages that contain the key in any block.

Theorem 2.4.1 Let WB = (WB,WB−1) be a wideblock mode of operation with tweak

space T, blocklength n and number of blocks m. Let F be a blockcipher with block size

and key size µ and a tweak space T with T(λ ) = {γ1
λ
,γ2

λ
} be a tweakable blockcipher

with a tweakspace of size two. Let J = EtE[WB,F ] be the wideblock tweakable cipher

associated to WB and F via the EtE transform as defined above. Let Φ = idω . Let A be

an adversary making at most Q oracle queries with the tweak argument in each query

having length at most nt. Then there is an adversary B such that

Advprp-ccaJ,Φ,A (λ )≤ 2 ·Advprp-ccaF,{id},B(λ )+2δ (WB,λ )

+
2Q2(µ(λ )2 +2)

2ω(λ )+2
,

where δ (WB,λ ) = Advprp-ccaWB,Q,µ,ω,τ(λ ). Moreover, the running time of B is about equal

to the running time of A.

The proof would seem at first to be a quite straightforward simulation in which KDFn

queries of A can be answered via KDFn queries of B. The subtle issue is that B needs

to be legitimate and this means it cannot answer all Fn−1 queries of A. Ensuring B is

legitimate makes the proof more involved.
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Main // G0,G1

k←${0,1}κ(λ ); S← /0

Return (b′ = 1)

proc Fn(t,m) // G0,G1

x← ECB(m :F(k,γ1
λ
, ·))

y←WB(t,x :F(k,γ2
λ
, ·))

Return y

proc KDFn(t, idm) // G0,G1

For i = 1, . . . ,m do
If m[i] =⊥ then m[i]← k

x← ECB(m :F(k,γ1
λ
, ·))

S← S∪{ x[i] : 1≤ i≤ m}
y←WB(t,x :F(k,γ2

λ
, ·))

Return y

proc Fn−1(t,c) // G0 , G1

x←WB−1(t,c :F−1(k,γ2
λ
, ·))

S′←{F[i] : 1≤ i≤ m}
m←⊥
If S∩S′ 6= /0 then bad← true

m← ECB(x :F−1(k,γ1
λ
, ·))

Else m← ECB(x :F−1(k,γ1
λ
, ·))

Return m

Main // H
π←$ TwPm({γ1

λ
,γ2

λ
},{0,1}µ(λ ))

k←${0,1}n; S← /0
Return (b′ = 1)

proc Fn(t,m) // H
x← ECB(m :π(γ1

λ
, ·))

y←WB(t,x :π(γ2
λ
, ·))

Return y

proc KDFn(t, idm) // H
For i = 1, . . . ,m do

If m[i] =⊥ then m[i]← k
x← ECB(m :π(γ1

λ
, ·))

S← S∪{ x[i] : 1≤ i≤ m}
y←WB(t,x :π(γ2

λ
, ·))

Return y

proc Fn−1(t,c) // H
x←WB−1(t,c :π−1(γ2

λ
, ·))

S′←{X [i] : 1≤ i≤ m}
m←⊥
If S∩S′ 6= /0 then bad← true
Else m← ECB(x :π−1(γ1

λ
, ·))

Return m

Figure 2.7. Games used in the proof of Theorem 2.4.1.

Proof: We begin with the games in Fig. 2.7 and Fig. 2.8. We have

Pr[RealAJ,idω
(λ )] = Pr[GA

0 (λ )]

= Pr[GA
0 (λ )]−Pr[GA

1 (λ )]+Pr[GA
1 (λ )]

≤ Pr[GA
1 (λ )]+Pr[Bad(GA

1 (λ ))] , (2.3)

the inequality by the Fundamental Lemma of Game Playing [25]. We will design B1,B2
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Main // I0, I1

π1←$ TwPm({γ1
λ
},{0,1}µ(λ ))

π2←$ TwPm(T,{0,1}µ(λ ))
k←${0,1}n; S← /0
Return (b′ = 1)

proc Fn(t,m) // I0, I1

x← ECB(m :π1(γ
1
λ
, ·))

y← π2(t,x)
Return y

proc KDFn(t, idm) // I0, I1

For i = 1, . . . ,m do
If m[i] =⊥ then m[i]← k

x← ECB(m :π1(γ
1
λ
, ·))

S← S∪{ x[i] : 1≤ i≤ m}
y← π2(t,x)
Return y

proc Fn−1(t,c) // I0 , I1

x← π
−1
2 (t,c)

S′←{ x[i] : 1≤ i≤ m}
m←⊥
If S∩S′ 6= /0 then bad← true

m← ECB(x :π
−1
1 (γ1

λ
, ·))

Else m← ECB(x :π
−1
1 (γ1

λ
, ·))

Return m

Figure 2.8. More games used in the proof of Theorem 2.4.1.

so that

Pr[GA
1 (λ )]−Pr[HA(λ )] ≤ Advprp-ccaF,{id},B1

(λ ) (2.4)

Pr[Bad(GA
1 (λ ))]−Pr[Bad(HA(λ ))] ≤ Advprp-ccaF,{id},B2

(λ ) . (2.5)

Adversaries B1,B2 are almost the same, differing only in how they take their final decision,

and accordingly we unify their descriptions. For i ∈ {1,2}, adversary Bi has access to

oracles Fn,KDFn,Fn−1 and simulates oracles of the same name for A. It starts by

setting S← /0 and bad← false and then it runs A, answering its oracle queries as follows.

When A queries Fn(t,m), adversary Bi does the following:

For i = 1, . . . ,m do x[i]← Fn(γ1
λ
,m[i])

y←WB(t,x :Fn(γ2
λ
, ·)))

Return y to A.
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The Fn calls made here by Bi are to its own Fn oracle. When A queries KDFn(t, idm),

adversary Bi does the following:

For i = 1, . . . ,m do

If m[i] =⊥ then x[i]←KDFn(γ1
λ
, id)

Else x[i]← Fn(γ1
λ
,m[i])

S← S∪{x[i] : 1≤ i≤ m}

y←WB(t,x :Fn(γ2
λ
, ·)))

Return y to A.

Again the calls made by Bi in the code above are to its own Fn,KDFn oracles. When A

queries Fn−1(t,c), adversary Bi does the following:

x←WB−1(t,x :Fn−1(γ2
λ
, ·)))

S′←{X [i] : 1≤ i≤ m}

m←⊥

If S∩S′ = /0 then

For i = 1, . . . ,m do m[i]← Fn−1(γ1
λ
,x[i])

Else bad← true

Return m to A.

As before, the calls made by Bi here are to its own Fn−1 oracle. So far there has been no

difference between B1,B2 but now, when A halts, they compute their outputs differently,

B1 returning the same output as A, but B2 returning 1 if bad = true and 0 otherwise.

We claim that Bi is legitimate, meaning that it never queries Fn−1 at a point (t,c)

which was output by a call to KDFn with tweak t. The Fn−1 queries issued by B1 occur

at two points, both when processing Fn−1 queries issued by A. Note that Bi only queries

KDFn with tweak γ1
λ

, and since the Fn−1 queries used in the computation of WB−1 are

all with the distinct tweak γ2
λ

, these queries will not violate legitimacy. The other queries
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made by Bi to Fn−1, which are under γ1
λ

, are only made if S∩S′ = /0, and hence do not

violate legitimacy. This explains why bad is set this way in the games. Now we have

Pr[RealB1
F,{id}(λ )] = Pr[GA

0 (λ )]

Pr[RandB1
F,{id}(λ )] = Pr[HA(λ )]

Pr[RealB2
F,{id}(λ )] = Pr[Bad(GA

0 (λ ))]

Pr[RandB2
F,{id}(λ )] = Pr[Bad(HA(λ ))]

which yields Equations (2.4) and (2.5).

Let B pick i ∈ {1,2} at random and run Bi, and let δ (F,λ ) = Advprp-ccaF,{id},B(λ ).

Then from Equations (2.3), (2.4), (2.5) we have

Pr[GA
0 (λ )]≤ 2δ (F,δ )+Pr[HA]+Pr[Bad(HA)] . (2.6)

We will design B3,B4 so that

Pr[HA(λ )]−Pr[IA
1 (λ )] ≤ Advprp-ccaWB,B3

(λ ) (2.7)

Pr[Bad(HA(λ ))]−Pr[Bad(IA(λ )
1 )] ≤ Advprp-ccaWB,B4

(λ ) . (2.8)

Adversaries B3,B4 are almost the same, differing only in how they take their final decision,

and accordingly we unify their descriptions. For i ∈ {3,4}, adversary Bi has access to

oracles Fn,Fn−1 and provides oracles Fn,KDFn,Fn−1 to A. It starts by selecting k

at random from {0,1}µ(λ ). It will then pick π at random from TwPm({γ1
λ
},{0,1}µ(λ )).

This is a conceptual simplification. Adversary Bi can’t really pick π in advance like this

and remain efficient. Instead it will build π on the fly via lazy sampling. It sets S← /0 and

bad← false and then runs A. When A queries Fn(t,m), adversary Bi does the following:
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x← ECB(m :π(γ1
λ
, ·))

y← Fn(t,x)

Return y to A.

When A queries KDFn(t, idm), adversary Bi does the following:

For i = 1, . . . ,m do

If m[i] =⊥ then m[i]← k

x← ECB(m :π(γ1
λ
, ·))

S← S∪{x[i] : 1≤ i≤ m}

y← Fn(t,x)

Return y to A.

When A queries Fn−1(t,c), adversary Bi does the following:

x← Fn−1(t,c)

S′←{X [i] : 1≤ i≤ m}

m←⊥

If S∩S′ = /0 then x← ECB(m :π(γ1
λ
, ·))

Else bad← true

Return m to A.

So far there has been no difference between B3,B4 but now, when A halts, they compute

their outputs differently, B3 returning the same output as A, but B4 returning 1 if bad =
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true and 0 otherwise. We have

Pr[ROB3
WB(λ )] = Pr[HA(λ )]

Pr[RandB3
mn(λ )] = Pr[IA

1 (λ )]

Pr[ROB3
WB(λ )] = Pr[Bad(HA(λ ))]

Pr[RandB3
ω(λ )µ(λ )

(λ )] = Pr[Bad(IA
1 (λ ))]

which yields Equations (2.7) and (2.8). Recall that δ (WB) = Advprp-ccaWB (Q,µ,ω,τ).

Then from Equations (2.6), (2.7), (2.8) we have

Pr[GA
0 (λ )]−Pr[IA

1 (λ )]≤ 2δ (F,λ )+2δ (WB,λ )+Pr[Bad(IA
1 (λ ))] . (2.9)

Consider game J of Fig. 2.6. Composing a random permutation with any independently

chosen permutation yields a random permutation, regardless of the distribution of the

second permutation, so

Advprp-ccaJ,idω ,A (λ ) = Pr[RealλJ,idω ,A]−Pr[RandA
J,idω

(λ )]

= Pr[GA
0 (λ )]−Pr[JA(λ )]

= Pr[GA
0 (λ )]−Pr[IA

0 (λ )]

= (Pr[GA
0 (λ )]−Pr[IA

1 (λ )])+(Pr[IA
1 (λ )]−Pr[IA

0 (λ )])

≤ (Pr[GA
0 (λ )]−Pr[IA

1 (λ )])+Pr[Bad(IA
1 (λ ))] .

Putting this together with Equation (2.9) we have

Advprp-ccaJ,idω ,A (λ )≤ 2δ (F,λ )+2δ (WB,λ )+2 ·Pr[Bad(IA
1 (λ ))] . (2.10)
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To complete the proof we bound the last term above. The assumption that A is legitimate

(this is where we use it) implies that if it makes query Fn−1(t,c) then it made no previous

KDFn(t, ·) query that returned c. We can wlog also assume that no previous Fn(t, ·)

query returned c. Taking a hit of Q(λ )2 ·2−ω(λ )µ(λ )−1 in the bound, we can view π(t, ·) as

a random function rather than a random permutation, so the response to a new Fn−1(t,c)

query is a new, random string, meaning each block is uniformly distributed in {0,1}µ(λ ).

If A made q1(λ ) queries to KDFn then the set S has size at most q1(λ )ω(λ ) and each

Fn−1 inverse query has chance at most q1ω(λ )22−µ(λ ) of setting bad. If it made q2(λ )

queries to Fn−1, the overall chance of setting bad is at most q1(λ )q2(λ )ω(λ )22−µ(λ ).

But q1(λ )+q2(λ )≤ Q(λ ) so q1(λ )q2(λ )≤ Q(λ )2/4 and thus

Pr[Bad(IA
1 (λ ))]≤

Q(λ )2

2ω(λ )µ(λ )+1
+

Q(λ )2ω(λ )2

2µ(λ )+2
≤ Q(λ )2(ω(λ )2 +2)

2µ(λ )+2
.

Combining this with Equation (2.10) completes the proof.

2.5 Implementation

We describe a fast AES-based instantiation of EtE. As a starting point, we need an

AES-based tweakable blockcipher. LRW [87] and XEX [79] are possible choices. Both

of them require two calls to the base AES blockcipher, but with XEX, one of the calls

can be can be made just once and the value cached as the cipher is used to encipher

many message blocks. We thus choose XEX. Applying StE to XEX yields a tweakable

blockcipher F . Now we need to pick a wideblock cipher to play the role of WB. We pick

EME which uses about two blockcipher calls per message block together with overhead

for offset computations. Let J be the wideblock tweakable cipher produced by applying

EtE to WB and F . We optimized J and compared its speed to that of EME.

XEX
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Figure 2.9. Running time of J on a scale where the running time of EME has been
normalized to 1.

Fix a security parameter λ = n. XEX over a blockcipher E: {0,1}n×{0,1}n

→{0,1}n has tweakspace {0,1}n× I, where I is the set of integers [1, . . . ,2n−2]. Arith-

metic operations in XEX are done in the field GF(2n), with elements of GF(2n) viewed

interchangeably as n-bit strings, integers in [0,2n−1] and as formal polynomials of degree

n−1 with binary coefficients. Addition is bitwise XOR and multiplication of two points

is performed by multiplying them as formal polynomials modulo the irreducible poly-

nomial p128(x) = x127 +x7 +x2 +x+1. XEX is defined by Ẽ(N,i)
K (M) = EK(M⊕∆)⊕∆

where ∆ = 2iN and N = EK(N). For our purposes, we require a much smaller tweak

space of two elements. We pick t0 = (0n,1) and t1 = (10n−1,1). Now, ∆ can assume

only two values (∆0,∆1) which can be precomputed and cached between successive calls,

avoiding running E for the second time to calculate N. The XOR operations still remain,

but they are parallelizable, using vector instructions [57].
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Experiments

We compare the speeds of EtE and EME on a processor that has the AES-NI

support for executing AES in hardware [73]. Our results show that encrypting with EtE

is slower than EME by a modest 15% or less. We ran the tests described below on a Intel

Xeon W3690 processor at 3.47 GHz with support for AES-NI running Linux version 2.6

with code compiled using gcc -O3 -ftree-vectorize -msse2 -ffast-math to enable vector

instructions and perform other general optimizations. The base code was from Brian

Gladman’s EME2 implementation [64], which we modified to run as EME and use the

hardware AES instructions.
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Chapter 3

Encryption of key-dependent messages

We provide a comprehensive treatment of security for key-dependent data for

authenticated encryption, the central practical goal of symmetric cryptography. For each

important variant of the goal we either show that it is impossible to achieve security or

present an efficient solution. Our attacks rule out security for in-use and standardized

schemes in their prescribed and common modes while our solutions show how to adapt

them in minimal ways to achieve the best achievable security.

3.0.1 Background

As, we discussed in Section 2, in the past, encyrption schemes were not been

designed to work in settings when the data being encrypted is related to the encyrption

key, following the view that key-dependent data is not a concern in practical systems.

However, security of key-dependent data has been a growing concern of late. The

first indications of prevalance of key-dependent data came from applications such as

anonymous credentials [43] and connections of cryptography to formal methods [29],

the latter being a more direct and widespread concern for secure systems.

Wider scenarios where key-dependent data is a reality started appearing following

these cases. Disk encryption is also an area where encryption or enciphering of key-

dependent messages can occur. For instance, the key used by disk-encryption tools such

45
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as BitLocker, could end up on disk due to various events, such as forced shutdowns

and the machine going into standby. As a result, the key under which a filesystem is

encrypted may itself be stored in a file on the same system.

Password based encryption is another area where key-dependent data is a partic-

ularly acute issue. Passwords are by nature derived from users personal contexts, and

could have strong relations with data being encyrpted by the users. A user could set her

password to the name of her dog, and then encrypt emails under the password. These

emails could of course have her dog’s name appearing in the text. Moreover, many of us

store our passwords on our systems and systems store password hashes.

The main takeaway from these examples is that security in the presence of key-

dependent data is essential for robust and misuse-resistant cryptography, because one

cannot expect applications to ensure or certify that their data is not key-dependent. Thus,

it is important to design practical cryptosystems which remain secure when encrypting

key-dependent data. We should start by designing security goals designed to enforce the

sort of key-dependencies that arise in real systems, and follow this by designing practical

and efficient schemes achieving these targets.

3.0.2 Related work

The issue of key-dependent messages was pointed out as early as Goldwasser and

Micali [67], and asymmetric encryption of decryption keys was treated by Camenisch

and Lysyanskaya [43], but a full treatment of key-dependent message (KDM) encryption

awaited BRS [29], who provided RO model KDM-CPA secure schemes. Researchers

then asked for what classes of message-deriving functions one could achieve KDM

security in the standard model, providing results for both symmetric and asymmetric

encryption under different assumptions [36, 82, 5, 38, 42, 37, 9, 47, 27, 4, 90]. On the

more practical side, Backes, Dürmuth and Unruh [6] show that RSA-OAEP [23, 59] is
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KDM-secure in the RO model. Backes, Pfitzmann and Scedrov [7] treat active attacks

and provide and relate a number of different notions of security.

By showing that IND-CPA security does not even imply security for the encryp-

tion of 2-cycles, Acar, Belenkiy, Bellare and Cash [1] and Green and Hohenberger [71]

settled a basic question in this area and showed that achieving even weak KDM-security

requires new schemes, validating previous efforts in that direction. Acar, Belenkiy, Bel-

lare, and Cash [1] also connect KDM secure encryption to cryptographic agility. Haitner

and Holenstein [74] study the difficulty of proving KDM security by blackbox reduction

to standard primitives.

Halevi and Krawczyk [77] consider blockciphers under key-dependent inputs.

Muñiz and Steinwandt [94] study KDM secure signatures. González, in an unpublished

thesis [68], studies KDM secure MACs.

Motivated by attacks on SSH, Paterson and Watson [96] consider notions of

security in the standard key independent data context which allow the attacker to interact

in a byte-by-byte manner with the decryption oracle. Our treatment does not encompass

such attacks, and extending the model of [96] to allow key-dependent data is an interesting

direction for future work.

Black, Rogaway and Shrimpton (BRS) [29] introduced the problem of encryption

of key-dependent messages, and proposed a new notion, KDM security, to extend IND-

CPA to allow key-dependent messages (KDMs). A new notion was necessary as the

standard goals for symmetric encyrption, IND-CPA and IND-CCA, that our schemes are

proven to meet, do not guarantee security when the message being encrypted depends on

the key. In this notion, the game provides the adversary with an encryption oracle that

takes input a function φ , called a message-deriving function, that the game applies to the

target key k to get a message m. Then, the adversary is returned either an encryption of

m under k or the encryption of 0|m|. To win, the adversary must distinguish between the
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two scenarios. In reality, both BRS and our work actually considers a multi-key setting,

where messages can depend on several keys. We restrict attention to the single-key setting

to simplify the current discussion. BRS present a simple random-oracle (RO) model

solution that achieves KDM security.

Post-BRS work has aimed mainly at building schemes secure against as large

as possible a class of message deriving functions without random oracles [36, 82, 5,

38, 42, 37, 9, 47, 27, 4, 90]. The resulting schemes suffer from one or more of the

following: they are in the asymmetric setting while data encryption in practice is largely

in the symmetric setting; they are too complex to consider usage; or security is provided

for a limited, mathematical class of message-deriving functions which does not cover all

key-dependencies in systems.

Backes, Pfitzmann and Scedrov (BPS) [7] define KDM-security for a basic form

of authenticated encryption and show that Encrypt-then-MAC [21] achieves it if the

encryption scheme is KDM secure and the MAC is strongly unforgeable (remarkably, no

KDM security is required from the MAC), resulting in RO model solutions via [29]. We

now extend their treatment of AE in several directions.

Authenticated encryption

In several applications, along with privacy, authenticity is also needed, meaning

plain, IND-CPA secure encryption does not suffice. The primitive needed is authenti-

cated encryption (AE), which provides both privacy and integrity. This is evidenced by

numerous standards and high usage: CCM [109, 108] is in IEEE 802.11, IEEE 802.15.4,

IPSEC ESP and IKEv2; GCM [92] is standardized by NIST as SP 800-38D; EAX [26] is

in ANSI C12.22 and ISO/IEC 19772; OCB 2.0 [101, 103] is in ISO 19772.

Authenticated encryption schemes follow the same syntax as regular symmetric

encryption schemes. The same correctness conditions apply. Symmetric encryption

schemes take as input a nonce, also called an IV. In the classical [67, 15] framework,
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the nonce gets chosen at random by the party performing the encryption; we call this

random-nonce security, denoted by r. Subsequent schemes sought to achieve more

robust security by targeting universal-nonce security [100, 102, 104] denoted by u where

security must hold even when the adversary provides the nonce, as long as no nonce is

re-used. This is adopted by the above-mentioned standards.

KDM security for authenticated encryption

We look at KDM security for authenticated encryption, specifically towards

analyzing the security of the aforementioned standards. Moreover, besides key, nonce

and message, modern AE schemes, including the above standards, take input a header,

or associated data [100]. The scheme must provide integrity but not privacy of the

header. Thus we must consider that not just the message, but also the header, could be

key-dependent.

We abbreviate key-dependent by kd and key-independent by ki. With two

choices for nonce type —nt ∈ {u,r}— two for message type —mt ∈ {kd,ki}— and

two for header type —ht ∈ {kd,ki}— we have 8 variants of AE. Existing works have

treated the ki variants, and in works such as Backes, Pfitzmann and Scedrov [7] the

special case of (nt,mt,ht) = (r,kd,ki) in which the header is absent is treated. Here,

we provide treatment for all variants.

Our first contribution is a definition of security for AE under key-dependent

inputs that captures all these 8 variants in a unified way. The encryption oracle takes

functions φm,φh, and applies them to the key to get message and header respectively,

and the adversary gets back either an encryption of these under the game-chosen target

key, or a random string of the same length. The decryption oracle takes a ciphertext

and, importantly, not a header but a function φh to derive it from the key, and either says

whether or not decryption under the key is valid, or always says it is invalid. Varying

the way nonces are treated and from what spaces φm,φh are drawn yields the different
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Table 3.1. Key-depdendent security for authenticated encryption. The definitions and
meaning of Yes and No entries are explained in text.

(ki,ki) (kd,kd) (ki,kd) (kd,ki)

u Yes No No No
r Yes No No Yes

variants of the notion. A definition of MACs for key-dependent messages emerges as the

special case of empty messages.

On a real system, the data may be a complex function of the key, such as a

compressed (zipped) version of file containing, amongst other things, the key, or an

error-corrected version of the key. If the key is a password the system will store its hash

that will be encrypted as part of the disk, so common password-hashing functions must

be included as message-deriving functions. All this argues for not restricting the types

of message-deriving or header-deriving functions, and indeed, following [29, 7], we

allow any functions in this role. These functions are even allowed to call the RO, which

complicates the proofs, but is essential to capture real applications.

Underlying the above definition is a new one of the standard AE goal that simpli-

fies that of [104] by having the decryption oracle turn into a verification oracle, returning,

not the full decryption, but only whether it succeeded or not, along the lines of [21].

When data is key-independent, these and prior formulations [21, 83] are equivalent, but

the difference is important with key-dependent data.

We establish security in the eight variants as follows. Consider the table in

Fig. 3.1. Each of message and header may be key-dependent (kd) or key-independent

(ki), leading to the four choices naming the columns. Security could be universal-nonce

(u) or random-nonce (r), leading to the two choices naming the rows. For each of the

8 possibilities, we indicate whether security is possible (Yes, meaning a secure scheme
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exists) or impossible (No, meaning there is an attack that breaks any scheme in this

category). The first column reflects known results when inputs are not key-dependent. We

first present an attack that shows that no AE scheme can achieve universal-nonce security

for key-dependent data. (Regardless of whether or not the header is key-dependent.) This

explains the “No” entries in the first row of Fig. 3.1. The attack requires only that the

nonce is predictable. Thus it applies even when the nonce is a counter, ruling out KDM

security for counter-based AE schemes and showing that the standardized schemes (CCM,

GCM, EAX, OCB) are all insecure for key-dependent messages in this case. The attack

does not use the decryption oracle, so rules out even KDM universal-nonce CPA secure

encryption. Thus, the universal-nonce security proven for the standardized schemes for

key-independent messages fails to extend to key-dependent ones, demonstrating that

security for key-dependent messages is a different and stronger security requirement.

An attack aiming to show that no stateful scheme is KDM-CPA secure was

described in [29] but the message-deriving functions execute a search and it is not clear

how long this will take to terminate or whether it will even succeed. In asymptotic terms,

the attack is not proven to terminate in polynomial time. Our attack extends theirs to use

pairwise independent hash functions, based on which we prove that it achieves a constant

advantage in a bounded (polynomial) amount of time. Interestingly, as a corollary of the

bound proven on our modified attack, we are able to also prove a bound on the running

time of the attack of [29], although it was not clear to us how to do this directly.

We also present an attack that shows that no AE scheme can achieve security

for key-dependent headers, and this holds even for random, rather than universal, nonce

security, and even for key-independent messages. This explains the “No” entries in

columns 2 and 3 of Fig. 3.1. This rules out security of the standardized schemes even

with random nonces in a setting where headers may be key-dependent.

One might consider this trivial with the following reasoning: “Since the header is
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not kept private, the adversary sees it, and if it is key-dependent, it could for example

just be the key, effectively giving the adversary the key.” The fallacy is the assumption

that the adversary sees the header. In our model, it is given a ciphertext but not directly

given the header on which the ciphertext depends. This choice of model is not arbitrary

but reflects applications, where a key-dependent header is present on the encrypting and

decrypting systems (which may be the same system) but not visible to the adversary.

Instead, the attack exploits the ability of the adversary to test validity of ciphertexts with

implicitly specified headers.

RHtE

We turn to achieving security in the only viable, but still important setting,

namely (nt,mt,ht) = (r,kd,ki). As background, recall that to achieve KDM-CPA

security, BRS [29] encrypt message m by picking r at random and returning H(k‖r)⊕m

where H is a RO returning |m| bits. Here and below, it is assumed the decryptor and

adversary also get the nonce r, but it is not formally part of the ciphertext. We note

that this is easily extended to achieve (r,kd,ki)-AE security. To encrypt header H and

message m under key k, pick r at random and return (c, t) where C = H1(k‖r)⊕m and

T = H2(k‖r,h,c) and H1,H2 are ROs.

Randomized Hash then Encrypt (RHtE) is more practical. Unlike the above, it is

not a dedicated scheme but rather transforms a standard secure only for key-independent

data base AE scheme into a (r,kd,ki)-secure AE scheme. RHtE, given key ` and

randomness R, derives subkey k = H(r‖`) via RO H and then runs the base scheme

with key k on the header and message to get the ciphertext c. Only one-time security

of the base scheme is required, so it could even be deterministic. The software changes

are non-intrusive since the code of the base scheme is used unchanged. Thus RHtE can

easily be put on top of existing standards like CCM, GCM, EAX, OCB to add security

in the presence of key-dependent messages. As long as these base schemes transmit
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their nonce, RHtE has zero overhead in bandwidth because it can use the base scheme

with some fixed, known nonce and use the nonce space for r. (It is okay to re-use the

base-scheme nonce because this scheme is only required to be one-time secure. Its key is

changing with every encryption.) The computational overhead of RHtE is independent

of the lengths of header and message and hence becomes negligible as these get longer.

The proof of security is surprisingly involved due to a combination of three

factors. First is that the message-deriving functions are allowed to call the RO. Second,

while the BRS scheme and its extension noted above are purely information theoretic,

the security of RHtE is computational due to the base scheme, and must be proven by

reduction. Third, unlike BRS, we must deal with decryption queries. To handle all this

we will need to invoke the security of the base scheme in multiple, inter-related ways,

leading to a proof with two, interleaved hybrids that go in opposite directions.

To illustrate the issues, let ` be the key and let E be the (deterministic) encryption

function of the base scheme. Let φ1, . . . ,φqe be the message-deriving functions in A’s

encryption queries. We begin with a natural hybrid in which the key k = H(rg‖`)

underlying the g-th query, for random g, plays the role of a key for the base scheme. The

reduction to the security of the latter fails if A queries rg‖` to the RO. We must consider

that it can do this indirectly, meaning the query is made via a message-deriving function,

or directly. But once a reply is provided to the g-th query, A gets rg. But φi is given ` as

input so we cannot avoid it querying rg‖` to the RO for i > g. We handle this by having

the hybrid move from real to random replies rather than the other way round, so that φi

does not even have to be computed by the reduction when i > g. One would imagine

that A cannot make the bad RO query directly because it does not know `. The subtle

point is that the truth of this relies on the assumed security of the base scheme and must

itself be proved by reduction. This reduction involves another hybrid that, to avoid the

same issue arising in another place, goes in the opposite direction, first random then real.
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The second hybrid has the peculiar feature that the games in its constituent steps are

differently weighted. On top of all this we must deal with decryption queries which are

not present for BRS.

Some indication of the complexity of the proof is provided by the fact that the

bound we finally achieve in Theorem 3.3.1 is weaker than we would like. It is an

interesting open problem to either prove a better bound for RHtE or provide an alternative

scheme with such a bound.

Extensions

In filesystem encryption, as with most applications, security is likely to stem

from the user’s password p. The system stores a hash pw = H(p) of it to authenticate

the user and an AE scheme must then encrypt or decrypt using p. Key dependent data

is now an even greater concern. One reason is that users tend to write their passwords

in files in their filesystems. The other reasons is that pw is a function of p that must be

stored on the system and thus will be encrypted with disk encryption. To address this, we

show that RHtE is secure even when its starting key L is a password as long as the latter

is drawn from a space that, asymptotically, has super-logarithmic min-entropy.

Implementation

We implemented RHtE for base schemes CCM, EAX and GCM, with SHA256

instantiating the RO. The results, provided in Section 3.4, show for example that with

CCM the slowdown is 11% for 5KB messages and only 1% for 50KB messages.

3.1 Definitions

We defined the syntax of authenticated encryption in Section 1. Here, we provide

a unified definition for universal and random nonce AE security and then extend this to

definitions of universal and random nonce AE security in the presence of key-dependent



www.manaraa.com

55

Main(1λ ) // KIAEA
SE,nt(λ )

K←$ K(1λ ) ; S← /0
b←${0,1}
b′←$ AEnc,Dec(1λ )
Return (b′ = b)

proc Enc(n,d,m) // KIAEA
SE,nt(λ )

If (nt= r) then n←${0,1}ρ(λ )

If (b = 1) then c← E(1λ ,k,n,d,m)
Else

γ ← cl(λ , |m|, |d|); c←${0,1}γ

S← S∪{(n,d,c)}
Return (n,c)

proc Dec(n,d,c) // KIAEA
SE,nt(λ )

If (n,d,c) ∈ S then return ⊥
If (b = 1) then m← D(1λ ,k,d,n,c)
Else m←⊥
If m =⊥ then v← 0 else v← 1
Return v

Main(1λ ) // AEA
SE,nt(λ )

For j = 1, . . . ,ν(λ ) do
k j←$ K(1λ ); S j← /0

b←${0,1}; b′←$ AEnc,Dec(1λ )
Return (b′ = b)

proc Enc( j,n,φh,φm) // AEA
SE,nt(λ )

m← φm(k1, . . . ,kν(λ ))

d← φh(k1, . . . ,kν(λ ))

If (nt= r) then n←${0,1}ρ(λ )

If (b = 1) then c← E(1λ ,k j,n,d,m)
Else

γ ← cl(λ ,ol(φm),ol(φh))
c←${0,1}γ

S j← S j∪{(n,d,c)} ; Return (n,c)

proc Dec( j,n,φh,c) // AEA
SE,nt(λ )

d← φh(k1, . . . ,kν(λ ))

If (n,d,c) ∈ S j then return ⊥
If (b = 1) then

m← D(k j,n,d,c) else m←⊥
If m =⊥ then return 0 else return 1

Figure 3.1. Game KIAESE,nt (left) defining AE-security of encryption scheme SE =
(K,E,D), where nt ∈ {u,r} indicates universal or random nonce, and (right) game
AESE,ν(λ ),nt defining KDI AE-security of SE.

messages and headers.

AE security

We now define standard (neither message nor header is key-dependent) AE

security for SE = (K,E,D). Consider game KIAEA
SE,nt shown on the left side of Fig. 3.1.

Define the advantage of adversary A via

Advae-ntSE,A (λ ) = 2Pr[KIAEA
SE,nt(λ )⇒ true]−1.
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When nt= u the definition captures what we call universal-nonce security. (It is simply

called nonce-based security in [102, 100, 104].) It is understood that in this case we

only consider A that is unique-nonce, meaning we have n 6= n′ for any two Enc queries

n,d,m and n′,d′,m′. Security is thus required even for adversary-chosen nonces as long

as no nonce is used for more than one encryption. When nt= r, the adversary-provided

nonce in Enc is ignored, a random value being substituted by the game, and we have

random-nonce security, in the classical spirit of randomized encryption [67, 15]. The

nonce returned by Enc is redundant in the u case but needed in the r case and thus

always returned for uniformity.

Historically the first definitions of security for AE had separate privacy (IND-

CPA) and integrity (INT-CTXT) requirements [21, 83, 24]. Our version is a blend of

the single-game formulation of [104] and INT-CTXT. Privacy is in the strong sense of

indistinguishability from random, meaning ciphertexts are indistinguishable from random

strings, which implies the more common LR-style [15] privacy, namely that ciphertexts

of different messages are indistinguishable from each other. (A subtle point is that the

length-respecting property assumed of E is important for this implication.) The integrity

is in the fact that the adversary can’t create new ciphertexts with non-⊥ decryptions.

(“New” means not output by Enc.) Unlike [104], oracle Dec does not return decryptions

but only whether or not they succeed. This simpler version is nonetheless equivalent to

the original. IND-CCA is implied by this definition of AE [21, 100].

KDI security of AE

We now extend the above along the lines of [29, 7] to provide our definition of

security for AE in the presence of key-dependent inputs, considering both key-dependent

messages and key-dependent headers. Consider game AESE,nt shown on the right side of
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Fig. 3.1. Define the advantage of adversary A via

Advae-ntSE,A (λ ) = 2Pr[AEA
SE,nt(λ )⇒ true]−1.

The argument ν(λ ) to Initialize is the number of keys; arguments φm,φh (message and

header deriving functions, respectively) in the Enc,Dec queries must be functions in

F(κ(λ ),ν(λ )); ol(φ) is the output length of φ ∈ F(κ(λ ),ν(λ )); and cl is the ciphertext

length of SE. When nt= u the definition again captures universal-nonce security. That

A is unique-nonce (always assumed in this case) now means that for each j ∈ [1..ν(λ )]

we have n 6= n′ for any two Enc queries j,n,φm,φh and j,n′,φ ′m,φ
′
h. When nt = r we

have random-nonce security.

Messages could be key-dependent or not, and so could headers, giving rise to four

settings of interest. These are best captured by considering different classes of adversaries.

For Φm(λ ),Φh(λ )⊆ F(κ(λ ),ν(λ )) let A[Φm(λ ),Φh(λ )] be the class of all adversaries

A for which φm in A’s Enc queries is in Φm(λ ) and φh in its Enc,Dec queries is

in Φh(λ ). Let f (a,b) and c(a,b) denote F(a(λ ),b(λ )) and C(a(λ ),b(λ )) respectively.

Let A[mt,ht] = A[Φm(λ ),Φh(λ )] where the values of (Φm(λ ),Φh(λ )) corresponding to

(mt,ht) = (kd,kd),(kd,ki),(ki,kd),(ki,ki) are, respectively,

( f (κ,ν), f (κ,ν)), ( f (κ,ν),c(κ,ν)), (c(κ,ν), f (κ,ν)), and (c(κ,ν),c(κ,ν)). We say

that SE = (K,E,D) is (nt,mt,ht)-AE secure if Advae-ntSE (A) is negligible for all efficient

A ∈ A[mt,ht].

Now that the header may not be known to the adversary in a Dec query, it

does not know in advance whether or not (h,n,c) ∈ S j and it deserves to know whether

rejection took place due to this or due to unsuccessful decryption. This why we do not

return ⊥ for both but rather ⊥ for one and 0 for the other. It was to disambiguate these

that we found it convenient to modify the starting definition of AE. The issue is crucial



www.manaraa.com

58

when considering security with key-dependent headers.

In the RO model there is an additional procedure Hash representing the RO. As

usual it may be invoked by the scheme algorithms and the adversary, but, importantly,

also by the input-deriving functions φm,φh. For input-deriving functions to be adversary

queries it is assumed they are encoded in some way. Recall that, as per our convention,

the running time of A is that of the execution of A with the game, so A pays in run

time if it uses functions whose description or evaluation time is too long. In asymptotic

terms, A is restricted to polynomial-time computable input-deriving functions, and their

description could be set to the Turing-machine that computes them.

Passwords as keys

The key-generation algorithm K in our syntax SE = (K,E,D) does not have to

output random κ(λ )-bit strings but could induce an arbitrary distribution, allowing us to

capture passwords. The metric of interest in this case is the min-entropy H∞[K] : N→ R

defined via H∞[K](λ )− log2(GP(K(1λ ))), where the guessing probability GP(K) is

defined as the maximum, over all κ(λ )-bit strings k, of the probability that k′ = k when

k′←$ K(1λ ). We aim to provide security as long as the min-entropy of the key-generator

is not too small. Providing security when keys are passwords is crucial because key-

dependent data is more natural and prevalent in this case. In practice, our keys are largely

passwords. They may be stored on disk. Their hashes are stored on the disk by the

system.

3.2 Impossibility Results

We now rule out universal-nonce security for key-dependent messages as well

as security for key-dependent headers, by first presenting an attack that shows that no

AE scheme can achieve universal-nonce security for key-dependent data, regardless of
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whether or not the header is key-dependent. As we explore below, the attack requires

only that the nonce is predictable, and works even when the nonce is a counter, ruling

out KDM security for counter-based AE schemes and showing that the standardized

schemes (CCM, GCM, EAX, OCB) are all insecure for key-dependent messages in this

case. Morevoer, the attack does not use the decryption oracle, so rules out even KDM

universal-nonce CPA secure encryption. An important consequence is that the universal-

nonce security proven for the standardized schemes for key-independent messages fails

to extend to key-dependent ones.

We then present an attack showing that no AE scheme can achieve security for

key-dependent headers, even for random, rather than universal, nonce security, and even

for key-independent messages. This rules out security of the standardized schemes even

with random nonces in a setting where headers may be key-dependent.

All the standardized schemes achieve universal-nonce security for ki-messages.

This is convenient as applications often provides for free something that can play the

role of a nonce, like a counter. It also increases resistance to misuse. We would like to

maintain this type of security in the presence of key-dependent data. Unfortunately we

show that this is impossible. We show that no scheme is (u,kd,ki)-AE secure:

Proposition 3.2.1 Let SE = (K,E,D) be an encryption scheme. Then there is an efficient

adversary A ∈ A[kd,ki] such that for all λ ∈ N, it holds that

Advae-uSE,A(λ )≥
1
4
.

As the proof of the above will show, the attack we present is strong in that the adversary

does not just distinguish real from random encryptions but recovers the key. (A simpler

attack is possible if we only want to distinguish rather than recover the key.) Also the

attack works even when the nonce is a counter rather than adversary controlled. And
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since the adversary does not use the decryption oracle we rule out even KDM-CPA

security. We begin with some background and an overview, then prove Proposition 3.2.1,

and finally show how to apply an underlying lemma to provide the first analysis of an

attack in BRS [29].

Background and overview

BRS [29, Section 6] suggest an attack aimed at showing that no stateful sym-

metric encryption scheme is KDM-secure. For the purpose of our discussion we

adapt it to an attack on universal-nonce security of an AE scheme SE = (K,E,D).

Let κ : N → N be the keylength of the scheme. We will use messages of length

µ : N→ N. Let cl : N→ N denote the length of the resulting ciphertexts. Let Hip(v,c) =

v[1]c[1]+ · · ·+ v[cl(λ )]c[cl(λ )] mod 2 denote the inner product modulo two of cl(λ )-bit

strings v,c. Let φv,i denote the message-deriving function that on input a key k returns

the first µ(λ )-bit message m such that Hip(v,E(1λ ,k, i,ε,m)) = k[i], or 0µ(λ ) if there is

no such message. (Here we use i as the nonce and ε as the header.) The adversary can

pick v (BRS do not say how, but the natural choice is at random), query φv,i to get (i,c),

and then recover k[i] as Hip(v,c), repeating for i = 1, . . . ,κ(λ ) to get k.

The difficulty is that φv,i must search the message space until it finds a message

satisfying the condition, and it is unclear how long this will take. In asymptotic terms, this

means there is no proof that the attack runs in polynomial time, meaning is a legitimate

attack at all. This issue does not appear to be recognized by BRS, who provide no

analysis or formal claims relating to the attack.

In order to have a polynomial time attack where the key-recovery probability is,

say, a constant, one would need to show that there is a polynomial number l of trials in

which the failure probability to recover a particular bit k[i] of the key is O(1/(κ(λ )).

(A union bound will then give the desired result.) We did not see a direct way to

show this. Certainly, for a particular i, the probability that the first message M fails to
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satisfy Hip(v,E(1λ ,k, i,ε,m)) = k[i] is at most 1/2, but it is not clear what is the failure

probability in multiple trials because they all use the same v. One approach to modify

the attack so that φv1,...,v`(λ ),i now depends on a sequence v1, . . . ,v`(λ ) of strings, chosen

independently at random by the adversary. On input the key k, the function computes the

smallest j such that Hip(v j,E(1λ ,k, i,ε,m j)) = k[i], where m1,m2, . . . ,m`(λ ) is a fixed

sequence of messages, and returns m j. Although one can prove that this “successful”

j is quickly found, the attack fails to work, since, to recover k[i] = Hip(v j,c) from the

ciphertext c = E(1λ ,k, i,ε,m j), the adversary needs to know j, and it is not clear how

the ciphertext is to “communicate” the value of j to the adversary.

We propose a different modification, namely to replace the inner product func-

tion with a family H: {0,1}σ(λ )×{0,1}cl(λ ) → {0,1} of pairwise independent func-

tions. The message-deriving function φs,i, on input k, will now search for m such that

H(s,E(1λ ,k, i,ε,m)) = k[i]. The adversary can pick S at random, query φs,i to get (i,c),

and then recover k[i] as H(s,c), repeating for i = 1, . . . ,κ(λ ) to get k. We will prove that

O(κ(λ )) trials suffice for the search to have failure probability at most O(1/κ(λ )) for

each i, and thus that the adversary gets a constant advantage in a linear number of trials.

This strategy can be instantiated by the pairwise independent family of functions

H: {0,1}cl(λ )+1×{0,1}cl(λ )→{0,1} defined by

H(s,c) = Hip(s[1] . . .s[cl(λ )],c)+ s[cl(λ )+1] mod 2

to get a concrete attack that is only a slight modification of the BRS one but is proven

to work. Given this, the question of whether the original attack can be proven to work

is perhaps moot, but we find it interesting for historical reasons. Our results would not

at first appear to help to answer this because the inner product function is not pairwise

independent. (For example, 0cl(λ ) is mapped to 0 by all functions in the family.) But



www.manaraa.com

62

curiously, as a corollary of our proof that the attack works for the particular family H

we just defined, we get a proof that the BRS attack works as well. This is because we

show that the attack using H works for an overwhelming fraction of functions from H,

and thus, with sufficient probability, even for functions drawn only from the subspace of

inner-product functions. We now proceed to the details.

Lemma 3.2.2 Let H: {0,1}α ×{0,1}β → {0,1} be a family of pairwise independent

hash functions. Let c1, . . . ,cl ∈ {0,1}β be distinct and let T ∈ {0,1}. Then

Pr
[
∀ j : H(s,c j) 6= T

]
≤ 1

l

where the probability is over a random choice of S from {0,1}α .

Proof:[Lemma 3.2.2] For each j ∈ {1, . . . , l} define x j: {0,1}α →{0,1} to take value 1

on input s if H(s,c j) = t and 0 otherwise. Regard x1, . . . ,x j as random variables over the

random choice of s from {0,1}α . Let x = x1+ · · ·+xl and let µ = E [x]. By Chebyshev’s

inequality, the probability above is

Pr [x = 0 ] ≤ Pr [ |x−µ| ≥ µ ] ≤ Var[x]
µ2 .

Since H is pairwise independent, so are x1, . . . ,xl and hence Var[x] = Var[x1] + · · ·

+Var[xl]. But for each j we have E
[
x j
]
= 1/2 and Var[x j] = 1/4, so µ = l/2 and

Var[x] = l/4. Thus the above is at most (l/4)/(l/2)2 = 1/l as desired.

We now use this to prove Proposition 3.2.1.

Proof:[Proposition 3.2.1] Let κ(λ ) be the key length, ρ(λ ) the nonce length and cl(λ )

the ciphertext length of SE. Let ` : N→N be the function defined by `(λ ) = 4 ·κ(λ ). Let

NumToStr( j) denote a representation of integer j ∈ {0, . . . , `(λ )} as a string of length



www.manaraa.com

63

exactly ν = dlog2(`(λ )+ 1)e bits. Let H: {0,1}σ(λ )×{0,1}cl(ν ,0)→ {0,1} denote a

family of pairwise independent hash functions with σ(λ )-bit keys.

We construct an adversary B that recovers the target key with probability at least

3/4 when playing the real game, meaning game AESE,u with challenge bit b = 1. From

B it is easy to build A achieving advantage at least 1/4. Below we depict B and also

define the message-deriving functions it uses. Nonces are given as integers and assumed

encoded as ρ(λ )-bit strings:

Adversary B(1λ )

For j = 1, . . . , `(λ ) do m[ j]← NumToStr( j)

s←${0,1}σ(λ )

For i = 1, . . . ,κ(λ ) do

(i,c)←$Enc(1, i,φε ,φm,s,i)

L[i]← H(s,c)

Return L

Function φm,s,i(k)

m← NumToStr(0)

For j = 1, . . . , l do

c j← E(K, i,ε,m[ j])

If H(s,c j) = k[i] then

m←m[ j]

Return m

Above m is a `(λ )-vector over {0,1}ν and φε is the constant function that returns the

empty string on every input. In its first step, B initializes the game to play with ν(λ ) = 1,

meaning a single target key. Function φm,s,i(k) returns a message from whose encryption

under nonce i and empty header one can recover bit i of the key by encoding this bit as

the result of H(s, ·) on the ciphertext. For the analysis, Lemma 3.2.2 says that for each i,

adversary B fails to recover k[i] with probability at most 1/4κ(λ ). By the union bound

B fails to recover k with probability at most 1/4.

Analysis of the BRS attack

As a corollary of Lemma 3.2.2 we not only show that the inner-product function

works but that it is worse only by a factor of two:
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Lemma 3.2.3 Let Hip: {0,1}cl(λ ) × {0,1}cl(λ ) → {0,1} be the function defined by

Hip(v,c) = v[1]c[1]+ · · ·+ v[cl(λ )]c[cl(λ )] mod 2. Let c1, . . . ,cl ∈ {0,1}cl(λ ) be distinct

and let t ∈ {0,1}. Then

Pr
[
∀ j : Hip(v,c j) 6= t

]
≤ 2

l
(3.1)

where the probability is over a random choice of V from {0,1}cl(λ ).

Proof:[Lemma 3.2.3] Define H: {0,1}cl(λ )+1×{0,1}cl(λ )→{0,1} by

H(s,c) = Hip(s[1] . . .s[cl(λ )],c)+ s[cl(λ )+1] mod 2 .

This family of functions is pairwise independent. Let G be the set of all s ∈ {0,1}cl(λ )+1

such that H(s,c j) = t for some j. For b ∈ {0,1} let Gb be the set of all s ∈ G with

s[cl(λ )+ 1] = b. Let ε = 1/`(λ ). Lemma 3.2.2 says that |G| ≥ (1− ε)2cl(λ )+1. But

G = G0∪G1 and G0,G1 are disjoint so

|G0|= |G|− |G1| ≥ |G|−2cl(λ ) ≥ (1− ε)2cl(λ )+1−2cl(λ ) = (1−2ε)2cl(λ ) .

We note that the probability on the left of Equation (3.1) equals 1−|G0|/2cl(λ ). This

concludes the proof.

With this in hand, one can substitute H by Hip in the proof of Lemma 3.2.1. By also dou-

bling the value of l, the analysis goes through and shows that the BRS attack terminates

in a linear number of trials and achieves a constant advantage.

3.2.1 Header insecurity

We would like to use schemes in such a way that headers are not key-dependent

but it may not be under our control. Applications may create headers based on data

present on the system in a way that results in their depending on the key. We would
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thus prefer to maintain security in the presence of key-dependent headers. We show that

this, too, is impossible, even when messages are key-independent. For both nt= u and

nt= r, we present attacks showing no scheme is (nt,ki,kd)-secure.

Proposition 3.2.4 Let SE = (K,E,D) be an encryption scheme. Then for any nt∈ {u,r}

there is an efficient adversary A ∈ A[ki,kd] such that

Advae-ntSE,A (1λ )≥ 1/2.

Proof:[Proposition 3.2.4] Let κ : N→ N be the keylength of SE. Again, we present an

adversary B that recovers the key with probability 1, from which A is easily built. Below

we depict B and also define the message-deriving functions it uses. Nonces are given as

integers and assumed encoded as ρ(λ )-bit strings:

Adversary B(1λ )

For i = 1, . . . ,κ(λ ) do

(ni,ci)←$Enc(1, i,biti,φ0); vi←Dec(1,ni,φ0,ci)

If vi =⊥ then k′[i]← 0 else k′[i]← 1

Return k′

Function biti(k)

Return k[i]

Here φc denotes the constant function that returns c ∈ {0,1}. The header computed

and used by the game in response to the i-th Enc query is k[i]. The header computed

and used by the game in response to the i-th Dec query is 0. Thus, Dec will return

⊥ if k[i] = 0. Otherwise, it will most likely return 0 because the headers don’t match,

although it might return 1, but in either case we have learned that k[i] = 1. The attack has

been written so that it applies in both the universal and random nonce cases. In the first

case we will have Ni = i. In the second case, ni will be a random number independent of

i chosen by the game.
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Remarks

The message-deriving functions used by the adversary in the proof of Proposi-

tion 3.2.1 invoke the encryption algorithm, which is legitimate since any efficient function

is allowed. Having encryption depend on a RO will not avoid the attack because the

message-deriving functions are allowed to call the RO and can continue to compute

encryptions. In an instantiation the RO will be a hash function and the system may apply

it to the key to get data that is later encrypted.

We do not suggest that precisely these attacks may be mounted in practice. The

message-deriving functions in our attacks are contrived. However, our attacks rule out

the possibility of a proof of security and thus there may exist other, more practical attacks.

Indeed, the history of cryptography shows that once an attack is uncovered, better and

more practical ones often follow.

3.3 The RHtE transform and its security

We describe our RHtE (Randomized Hash then Encrypt) transform and prove

that it endows the base scheme to which it is applied with (r,kd,ki)-AE security.

The transform

Given a base symmetric encryption scheme SE = (K,E,D), a key-generation

algorithm L(λ ) returning l : N→ N bit strings, and an integer parameter ρ : N→ N

representing the length of the random seed used in the key-hashing, the RHtE transform

returns a new symmetric encryption scheme SE = RHtE[SE,L(λ ),ρ] = (L(λ ),E,D). It

has L(λ ) as its key-generation algorithm, keylength ω : N→ N, noncelength ρ : N→

N and the same ciphertextlength as the base scheme. Its encryption and decryption

algorithms are defined as follows, where Hash: {0,1}ρ(λ )+ω(λ )→{0,1}κ(λ ) is a RO,

` ∈ {0,1}`(λ ) is the key, r ∈ {0,1}ρ(λ ) is the nonce which in the security game will be
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random, h is the header and m is the message:

Algorithm E(1λ , `,r,h,m)

k← H(r‖`); c← E(1λ ,k,h,m)

Return c

Algorithm D(1λ , `,r,h,c)

k← H(r‖`); m← D(1λ ,k,h,c)

Return m

The base scheme SE = (K,E,D) is assumed to achieve standard (nt,ki,ki)-AE security,

with nt being either u or r. It is assumed to be a standard (as opposed to RO) model

scheme. This is not a restriction because for the type of security we assume of it (no

key-dependent data) there is no need to use a RO and none of the standardized, in use

schemes do, and in any case the assumption is only for simplicity. We are not concerned

with keys of the base scheme being passwords because, in standard schemes, they aren’t.

(Most of the time the key is an AES key.) So it is assumed that K returns random strings of

length k. We only require one-time security of the base scheme. Accordingly we assume

it is nonceless and deterministic and drop the nonce input above for both encryption and

decryption. One can obtain such a scheme from standard ones by fixing a single, public

nonce and hardwiring it into the algorithm. The repeated use of the nonce causes no

problems since the key k is different on each encryption.

We want the constructed scheme SE to provide security not only when its keys

are full-fledged cryptographic ones but also when they are passwords. Hence we view

as given an (arbitrary) key-generation algorithm L(λ ) returning ω(λ )-bit strings under

some arbitrary distribution, and design SE to have L(λ ) as its key-generation algorithm.

The ciphertext returned is a ciphertext of the base scheme but this is deceptive

since in practice r will have to be transmitted too to enable decryption. Nonetheless, in

common usage, there will be no bandwidth overhead. This is because we must compare

to a standard use of the base scheme where it too uses and transmits a nonce. We have

saved this space by fixing this nonce and can use it for r. However, if we are in a mode

where the base scheme gets the nonce out-of-band, we have r bits of bandwidth overhead.
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The computational overhead is independent of the message size. Implementations with

base schemes CCM, EAX and GCM (see Section 3.4) show that for the first the slowdown

is 11% for 5KB messaegs and only 1% for 50KB messages.

The BRS scheme [29] is purely RO-based, and one needs ROs with outputs

of length equal to the length of the message. In our scheme the RO is used only for

key-derivation and its output length is independent of the length of the message to be

encrypted. In this sense, the reliance on ROs is reduced.

3.3.1 Security of RHtE

The following theorem says that if the base scheme is secure for key-independent

headers and messages then the constructed scheme is random-nonce secure for key-

dependent messages and key-independent headers.

Theorem 3.3.1 Let SE = (K,E,D) be a base symmetric encryption scheme as above. Let

L(λ ) be a key-generation algorithm with keylength ω and let ρ : N→ N be a function.

Let SE = RHtE[SE,L(λ ),r] be the RO model symmetric encryption scheme associated

to SE,L(λ ),r as above. Let A ∈ A[kd,ki] be an adversary making qe(λ ) Enc queries,

qd(λ )Dec queries and qh(λ )Hash queries, and let ν(λ )≤ 2H∞[L(λ )]−1 be the number

of keys, meaning the argument of A’s Initialize query. Then there is an adversary D

such that

Advae-r
SE

(A)≤ (24qe(λ )
2 +2qd(λ )) ·AdvaeSE(D)

+
8ν(λ )qe(λ )qh(λ )+2ν(λ )(ν(λ )−1)qe(λ )

2H∞[L(λ )]

+
2qe(λ )(qh(λ )+2qe(λ )ν(λ ))

2r . (3.2)

Adversary D makes only one Enc query and has the same number of Dec queries and
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Main // Fα,β (λ )

For j = 1, . . . ,ν(λ ) do
` j←$ L(λ ); S j← /0

Return (b′ = 1)

proc Dec( j,r,h,c) // F1,1,F0,1

If (r,h,c) ∈ s j then return ⊥
m← D(1λ , ` j,r,h,c)
If m =⊥ then v← 0 else v← 1
Return v

proc Dec( j,r,h,c) // F1,0,F0,0

If (r,h,c) ∈ s j then return ⊥
Return 0

proc Enc( j,n,h,φ) // F1,1,F1,0

r←${0,1}ρ(λ )

c←$ E(1λ , ` j,r,h,φ(`1, . . . , `ν(λ )))

s j← s j∪{(r,h,c)}
Return (r,c)

proc Enc( j,n,h,φ) // F0,1,F0,0

γ ← cl(λ ,ol(φ), |h|); c←${0,1}γ

r←${0,1}ρ(λ ); s j← s j∪{(r,h,c)}
Return (r,c)

Figure 3.2. Games Fα,β for α,β ∈ {0,1}. Next to each procedure we write the games
in which it occurs.

the same time complexity as A.

We have omitted the nt superscript in the advantage of D because SE is nonceless. That

only one-time security is required of SE is reflected in the fact that D makes only one

Enc query. We remark that the bound in Theorem 3.3.1 does not appear to be tight. It is

an interesting open problem to either provide a proof with a better bound or an alternative

scheme for which a tight bound can be proved.

Proof overview

As we noted in Section 4.1 the proof is surprisingly involved because message-

deriving functions are allowed to query the RO and because the assumed security of the

base scheme must be invoked in multiple, inter-related ways in different parts of the

argument, leading to two hybrids in opposite directions, one, unusually, with steps that

are differently weighted.

Assume for simplicity that ν(λ ) = 1, meaning there is a single target key, denoted

`. Also assume A makes no Dec queries. Denote by φ1, . . . ,φqe(λ ) the message-deriving
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functions in its Enc queries and ignore the corresponding headers. Picking index g at

random we set up a hybrid in which the i-th Enc query φi is answered by encrypting

message φi(`) under ` as in the real game if i < g and answered at random if i > g, the

g-th query toggling between real and random to play the role of the challenge for an

adversary B against the base scheme. Let r1, . . . ,rqe(λ ) denote the random nonces chosen

by the game. The reduction B cannot answer hash oracle query rg‖` because the reply is

its target key so a bad event is flagged if A either makes this query directly, or indirectly

via a message-deriving function. But once query g has been answered, A has rg and thus

for queries i > g, nothing can prevent φi from querying rg‖` to the RO, and how are

these queries to be answered by B? Crucial to this was doing the hybrid top to bottom,

meaning first real then random rather than the other way round. This enables us to avoid

evaluating φi on ` for post-challenge queries, so that its RO queries do not need to be

answered at all. This leaves the possibility that A directly makes hash query rg‖` after

it gets rg. Intuitively this is unlikely because A does not know `. The subtle point is

that this relies on the assumed security of the base scheme and hence must be proven by

reduction. However, doing such a reduction means another hybrid and seems to simply

shunt the difficulty to another query. To get around this circularity, we do the second

hybrid in the opposite direction and also with different “weights” on the different steps.

3.3.2 Proof of Theorem 3.3.1

Consider executing A with the games of Fig. 3.2. For simplicity we have not

displayed procedure Hash, which implements the RO and is called by E,D. We need to

bound

Pr[FA
1,1(λ )]−Pr[FA

0,0(λ )]

=
(

Pr[FA
1,1(λ )]−Pr[FA

0,1(λ )]
)
+
(

Pr[FA
0,1(λ )]−Pr[FA

0,0(λ )]
)

(3.3)
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Main(1λ ) // G(λ ),H(λ )

000 For j = 1, . . . ,ν(λ ) do
001 ` j←$ L(λ )(1λ ); S j← /0
002 For i = 1, . . . ,qe(λ ) do
003 ri, j←${0,1}ρ(λ )

004 i← 0; b←${0,1}; k←${0,1}κ(λ )

005 g←${1, . . . ,qe(λ )}
006 b′←$ AEnc,IHash,Dec(λ )
007 Return (b′ = 1)

proc Enc( j,n,h,φ) // G(λ ) , H(λ )

101 i← i+1; c← cl(ol(φ), |h|)
102 If (i≤ g) then
103 m←EvalIHash(φ , `1, . . . , `ν(λ ))
104 If i < g then
105 ci← E(1λ ,IHash(ri, j ‖` j),h,m)
106 If (i = g and b = 1) then
107 If H[ri, j ‖` j] then
108 bad← true; k← H[ri, j ‖` j]

109 s← j; ci← E(1λ ,k,h,m)
110 If (i = g and b = 0) then
111 s← j; ci←${0,1}c

112 If i > g then ci←${0,1}c

113 S j← S j∪{(ri, j,h,ci)}
114 Return (ri, j,ci)

proc IHash(r‖`) // G(λ ) , H(λ )

200 If not H[r‖`] then
201 H[r‖`]←${0,1}κ(λ )

202 If (r‖`= rg,s ‖`s) then
203 bad← true; H[r‖`]← k
204 Return H[r‖`]
proc Hash(r‖`) // G , H
300 If not H[r‖`] then
301 H[r‖`]←${0,1}κ(λ )

302 If (r‖`= rg,s ‖`s) then
303 bad← true; H[r‖`]← k
304 Return H[r‖`]
proc Dec( j,r,h,c) // G(λ ),H(λ )

400 If (r,h,c) ∈ S j then return ⊥
401 If (r‖` j = rg,s ‖`s) then
402 m← D(1λ ,k,h,c)
403 Else
404 k′IHash(r‖` j)

405 m← D(1λ ,k′,h,c)
406 If m =⊥ then V ← 0 else V ← 1
407 Return V

Figure 3.3. Games G,H for the proof of Theorem 3.3.1. A box around a game next to a
procedure means the boxed code of that procedure is included in the game.

and will bound the two terms in turn, meaning that, leaving the decryption oracle fixed to

the real one, we will first turn answers to encryption queries from real to random and

then, leaving them at random, flip the decryption oracle to ⊥.

For the first step we consider games G,H of Fig. 3.3. Game G sets up a hybrid

in which the first g−1 Enc queries are answered by real encryption, the g-th toggles

between real and random depending on bit b, and the rest are answered by random

ciphertexts. This aims to set up a reduction to the assumed security of SE for the g-th
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Main(1λ ) // All
k←${0,1}κ(λ ); S← /0
b′←$ AEnc,Dec,Hash(λ ); Return (b′ = 1)

proc Dec(r,h,c) // E1,1(λ ),E0,1(λ )

If (r,h,c) ∈ S then return ⊥
m← D(1λ ,k,r,h,c)
If m =⊥ then v← 0 else v← 1
Return v

proc Dec(r,h,c) // E1,0(λ ),E0,0(λ )

If (r,h,c) ∈ S then return ⊥
Return 0

proc Enc(n,h,m) // E1,1(λ ),E1,0(λ )

r←${0,1}ρ(λ )

c← E(1λ ,k,r,h,m)
S← S j∪{(h,c)}; Return (r,c)

proc Enc(n,h,m) // E0,1(λ ),E0,0(λ )

c← cl(|m|, |h|); r←${0,1}ρ(λ )

c←${0,1}cl(λ ); S← S∪{(h,c)}
Return (r,c)

Figure 3.4. Games Eα,β for α,β ∈ {0,1}.

encryption with k playing the role of the key underlying the game of the adversary

attacking SE. This adversary would not know k and, to allow it to simulate A, hash

queries that would need to return k are flagged and removed from the now simulatable

game H at the cost of the probability of setting bad. The decryption oracle is the real one,

in both games. Procedure IHash has been introduced to answer indirect hash queries,

namely those made by φ , Enc or Dec, because they will have to be treated differently

from direct hash queries of A, still answered by Hash. The proof of the following is in

Section 3.3.3.

Lemma 3.3.2 There exists an adversary B1 so that

1
qe(λ )

(Pr[FA
1,1(λ )]−Pr[FA

0,1(λ )])

≤ Pr[EB1
1,1(λ )]−Pr[EB1

0,1(λ )]+2Pr[BAD(HA(λ ))].

The games Eα,β (λ ) referred to here are in Fig. 3.4. We must now bound the probability

that HA(λ ) sets bad. The proof of the following lemma appears in Section 3.3.4.
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Lemma 3.3.3 The probability of BAD(HA(λ )) is at most

Pr[BAD(HA(λ ),303)]+
qh(λ )+2qe(λ )ν(λ )

2ρ(λ )
. (3.4)

Here BAD(HA(λ ),x) is the event that bad is set at line x. The argument makes crucial

use of the fact that the games provide random answers to post-challenge Enc queries.

This is what allows us to not evaluate φ post-challenge. Had we done the hybrids in the

opposite direction, beginning with random answers and then providing real ones, the

probability that IHash sets bad could be large. We now need to bound the first term

above where subtle issues arise.

Post-challenge, A has rg,s. If the probability Pr[BAD(HA(λ ),303)] that HA(λ )

sets bad at line 303 is to be small, we expect that it is because A is unlikely to know `s and

thus unlikely to query rg,s ‖`s. We might think, accordingly, that Pr[BAD(HA(λ ),303)] is

unconditionally bounded by qh(λ )/2H∞[L], but this turns out to be wrong. In fact,

the argument is necessarily computational, relying on the assumed security of SE.

To see this, suppose E(1λ ,k,m) = m for all m (no header). Let A’s first Enc query

be 1,φ where φ(`1, . . . , `n) = `1, and suppose g > 1. The Enc procedure returns

(r1,1,E(1λ ,IHash(r1,1 ‖`1), `1)) = (r1,1, `1), to A and thus A has `1. It uses j = 1 in all

subsequent Enc queries as well (it does not matter what is the corresponding φ ) so that

s is set to 1 at line 107 or 109. After it receives rg,1 from the response to its g-th Enc

query, it can make hash query rg,1 ‖`1 since it knows `1 and thus sets bad whenever g > 1,

meaning with (high) probability 1−1/qe(λ ).

Of course, if SE is secure it will not be that E(1λ ,k,m) = m for all m. But what

this means is that bounding Pr[BAD(HA(λ ),303)] must rely on the assumed security of

SE. Towards obtaining this bound, consider game Ig,h of Fig. 3.5, which is parameterized

by g,h. It provides random responses to the first h Enc queries, then provides real
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Main(1λ ) // Ig,h(λ )

000 For j = 1, . . . ,ν(λ ) do
001 ` j←$ L(λ ); S j← /0
002 For i = 1, . . . ,qe(λ ) do
003 ri, j←${0,1}ρ(λ )

004 i← 0; b←${0,1}; k←${0,1}κ(λ )

005 b′←$ AEnc,Dec,IHash(λ )
006 Return (b′ = 1)

proc Enc( j,n,h,φ) // Ig,h(λ )

100 i← i+1; c← cl(ol(φ), |h|)
101 If (i≤ g) then
102 m←EvalIHash(φ , `1, . . . , `ν(λ ))

103 If (i≤ h) then ci←${0,1}c

104 If (h < i < g) then
105 ci← E(IHash(ri, j ‖` j),h,m)
106 If (i = g and b = 1) then
107 s← j; ci← E(k,h,m)
108 If (i = g and b = 0) then
109 s← j; ci←${0,1}c

110 If i > g then ci←${0,1}c

111 S j← S j∪{(ri, j,h,ci)}
112 Return (ri, j,ci)

proc IHash(r‖`) // Ig,h(λ )

200 If not H[r‖`] then
201 H[r‖`]←${0,1}κ(λ )

202 Return H[r‖`]
proc Hash(r‖`) // Ig,h

300 If not H[r‖`] then
301 H[r‖`]←${0,1}κ(λ )

302 If (r‖`= rg,s ‖`s) then
303 bad← true
304 Return H[r‖`]
proc Dec( j,r,h,c) // Ig,h(λ )

400 If (r,h,c) ∈ S j then return ⊥
401 If (r‖` j = rg,s ‖`s) then
402 m← D(k,h,c)
403 Else m← D(IHash(r‖` j),h,c)
404 If m =⊥ then V ← 0 else V ← 1
405 Return V

Figure 3.5. Games Ig,h for 0≤ h≤ g−1≤ qe(λ )−1.

responses until it gets to the g-th query, to which it responds as does H. Subsequent

queries get random responses. The game returns true when bad is set in procedure Hash.

We have

Pr[BAD(HA(λ ),303)] = 1
qe(λ )

∑
qe(λ )
g=1 Pr[IA

g,0(λ )] . (3.5)

Towards bounding this we begin by considering game Ig,g−1. In the case b = 0, all Enc

queries receive random answers and thus Enc does not leak any information about `s.

We would like to say that this leads to an unconditional bound on the probability that bad

is set at line 303 but this fails to consider Dec queries whose answers can still depend
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on `s. Using the fact that these answers, however, depend only on entries H[·‖`s] we do

succeed in unconditionally bounding the probability that bad is set in game Ig,g−1 when

b = 0. The assumed security of SE can then be used to say that bad is set not much more

often when b = 1. All this is captured by the following whose proof is in Section 3.3.5.

Lemma 3.3.4 There is an adversary B2 so that

1
qe(λ )

∑
qe(λ )
g=1 Pr

[
IA
g,g−1(λ )

]
≤ 1

2
Pr[EB2

1,1(λ )]−
1
2

Pr[EB2
0,1(λ )]

+
4ν(λ )qh(λ )+ν(λ )(ν(λ )−1)

2H∞[L]+1
.

The next lemma bridges the gap from Ig,g−1 to Ig,0. An unusual aspect of the proof of

the following, which appears in Section 3.3.6, is that adversary B3 will need to assign

different weights to the different hybrids.

Lemma 3.3.5 There exists an adversary B3 so that

1
qe(λ )2 ∑

qe(λ )
g=1 (Pr

[
IA
g,0(λ )

]
−Pr

[
IA
g,g−1(λ )

]
)

≤ Pr[EB3
1,1(λ )]−Pr[EB3

0,1(λ )].

From Lemma 3.3.5 and Lemma 3.3.4 we have the following, which bounds the first term

of Equation (3.3).

Lemma 3.3.6 There is an adversary D1 such that

Pr[FA
1,1(λ )]−Pr[FA

0,1(λ )]≤ 24qe(λ )
2 ·AdvaeSE(D1)

+
4ν(λ )qe(λ )qh(λ )+ν(λ )(ν(λ )−1)qe(λ )

2H∞[L]

+
2qe(λ )(qh(λ )+2qe(λ )ν(λ ))

2ρ(λ )
. (3.6)
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Main(1λ ) // J(λ ),L(λ )
000 For j = 1, . . . ,ν(λ ) do
001 ` j←$ L(λ )(1λ ); S j← /0
002 For i = 1, . . . ,qe(λ ) do
003 ri, j←${0,1}ρ(λ )

004 g←${1, . . . ,qd(λ )}
005 For d = 1, . . . ,qd(λ ) do
005 k[d]←${0,1}κ(λ )

007 i,d← 0; b←${0,1}
proc Enc( j,n,h,φ) // J(λ ),L(λ )
100 i← i+1; c← cl(ol(φ), |h|)
101 ci←${0,1}c; S j← S j∪{(ri, j,h,ci)}
102 Return (ri, j,ci)

proc Hash(r‖`) // J(λ ) , L(λ )
200 If not H[r‖`] then
201 H[r‖`]←${0,1}κ(λ )

202 If Ind[r‖`] then
203 bad← true
204 H[r‖`]← k[Ind[r‖`]]
205 Return H[r‖`]

proc Dec( j,r,h,c)) // J(λ )
300 If (r,h,c) ∈ S j then return ⊥
301 If not Ind[r‖` j] then
302 d← d +1; Ind[r‖` j]← d
303 e← Ind[r‖` j]
304 If H[r‖` j] then
305 bad← true
306 k[e]← H[r‖` j]

307 If (e < g) then
308 m← D(1λ ,k[e],h,c)
309 If ((e = g) and (b = 1)) then
310 m← D(1λ ,k[e],h,c)
311 If ((e = g) and (b = 0)) then
312 Return 0
313 If (e > g) then return 0
314 If m =⊥ then v← 0 else v← 1
315¿ Return v

Figure 3.6. Games J,L to bound second term in Equation (3.3).

The proof is in Section 3.3.7. We proceed to bound the second term of Equation (3.3).

Game J of Fig. 3.6 responds to the first g−1 Dec queries correctly, to the g-th either

correctly or by ⊥ depending on whether b = 1 or b = 0, and to the rest by ⊥. Enc

queries all receive random answers. This aims to set up a reduction to the assumed

security of SE with k[g] playing the role of the key underlying the game of the adversary

attacking SE. To allow such an adversary to simulate A, hash queries that would need to

return any of the keys are flagged and removed from the now simulatable game L at the

cost of the probability of setting bad. The proof of the following is in Section 3.3.8.



www.manaraa.com

77

Lemma 3.3.7 There exists an adversary B4 so that

1
qd(λ )

(
Pr[FA

0,1(λ )]−Pr[FA
0,0(λ )]

)
≤Pr[EB4

SE,0,1(λ )]−Pr[EB4
SE,0,0(λ )]

+2Pr[BAD(LA(λ ))].

We must now bound the probability that LA sets bad. Assume `1, . . . , `ν(λ ) are distinct,

which happens except with probability ν(λ )(ν(λ )−1)/2H∞[L]+1. Now the role of ` j as

an index to H can be played by j. Since the boxed code is omitted in game L, the tests of

lines 202 and 304 need not be perfomed there. Rather, the queries can be recorded and

the tests to set bad done in Finalize. At this point `1, . . . , `ν(λ ) are not referred to by

the oracles and may also be chosen in Finalize. The flag bad is set only when a query

to Hash involves ` j for some j hence is set with probability at most ν(λ )qh(λ )/2H∞[L].

We conclude that

Pr[BAD(LA(λ ))] ≤ ν(λ )(ν(λ )−1)
2H∞[L]+1

+
ν

∑
j=1

(λ )
qh(λ )

2H∞[L]− ( j−1)

≤ ν(λ )(ν(λ )−1)
2H∞[L]+1

+
2ν(λ )qh(λ )

2H∞[L]

=
4ν(λ )qh(λ )+ν(λ )(ν(λ )−1)

2H∞[L]+1
. (3.7)

The second inequality above used the assumption, made in the theorem statement, that

ν(λ )≤ 2H∞[L]−1. From Lemma 3.3.7 and Equation (3.7) we have

Pr[FA
0,1(λ )]−Pr[FA

0,0(λ )]≤ qd(λ )(Pr[EB4(λ )
SE,0,1]−Pr[EB4(λ )

SE,0,0])

+
4ν(λ )qd(λ )qh(λ )+ν(λ )(ν(λ )−1)qd(λ )

2H∞[L]
.
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Apply Lemma 3.3.8 (Section 3.3.9) to B4. This yields adversary D2 such that

Pr[FA
0,1(λ )]−Pr[FA

0,0(λ )]≤ 2qd(λ ) ·AdvaeSE(D2)

+
4ν(λ )qd(λ )qh(λ )+ν(λ )(ν(λ )−1)qd(λ )

2H∞[L]
. (3.8)

Finally let adversary D run D1 with probability 24qe(λ )
2/(24qe(λ )

2 +2qd(λ )) and D2

otherwise. From equations 3.3, 3.6 and 3.8 we have Equation (3.2), concluding the proof

of Theorem 3.3.1.

3.3.3 Proof of Lemma 3.3.2

The proof refers to the games of Fig. 3.2 and Fig. 3.4. We have

1
qe(λ )

(
Pr[FA

1,1(λ )]−Pr[FA
0,1(λ )]

)
= 2Pr[GA(λ )]−1 (3.9)

= 2(Pr[HA(λ )]+Pr[GA(λ )]−Pr[HA(λ )])−1

≤ 2Pr[HA(λ )]−1+2Pr[BAD(HA(λ ))] . (3.10)

Equation (3.10) follows from the Fundamental Lemma of Game Playing [25] because

games G,H are identical until bad, meaning differ only in code following the setting of

bad to true. To justify Equation (3.9) note that when b = 1 the first g replies are real and

the rest random, and when b = 0 the first g−1 replies are real and the rest random.

Adversary B1 begins with initializations

For j = 1, . . . ,ν(λ ) do

` j←$ L(1λ ); S j← /0

For i = 1, . . . ,qe(λ ) do ri, j←${0,1}ρ(λ )

i← 0; g←${1, . . . ,qe(λ )}
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Now B1 runs A. It replies to Enc query j,d,φ of A via

i← i+1; c← cl(ol(φ , |d|))

If (i≤ g) then

m←EvalIHash(φ , `1, . . . , `ν(λ ))

If i < g then ci← E(1λ ,IHash(ri, j ‖` j),d,m)

If (i = g) then s← j; ci←$Enc(d,m)

If i > g then ci←${0,1}cl(λ )

S j← S j∪{(ri, j,d,ci)}

Return (ri, j,ci)

In this code, Enc is B1’s own encryption oracle which it calls with message M. B1

replies to IHash or Hash query r‖` via

If not H[r‖`] then H[r‖`]←${0,1}κ(λ )

Return H[r‖`]

It replies to Dec query j,r,d,c via

If (r,d,c) ∈ S j then return ⊥

If (r‖` j = rg,s ‖`s) then m←Dec(d,c)

Else m← D(1λ ,IHash(r‖` j),d,c)

If m =⊥ then v← 0 else v← 1

Return v

where Dec called in this code is B1’s own decryption oracle. When A halts with output

b′, so does adversary B1. Think of the key K of game H as being the one underlying

games AESE,1,1,AESE,0,1 for B1. Thus

2Pr[HA(λ )]−1 = Pr[EB1
1,1(λ )]−Pr[EB1

0,1(λ )] .
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3.3.4 Proof of Lemma 3.3.3

No information about rg,s is provided to A until the g-th Enc query is answered, so

the probability that bad is set at line 106 is at most qh(λ )/2ρ(λ ). Once rg,s is released,

however, A could in fact specify a φ whose evaluation would result in hash query rg,s ‖κ .

This difficulty is circumvented by the If statement on line 102, which performs the

evaluation of φ only if i≤ g. As a result procedure IHash is not called by Enc after the

challenge. It might be called post-challenge by Dec but due to line 401 this will not set

bad. Thus IHash sets bad only with the probability that some ri, j equals rg,s which is at

most qe(λ )ν(λ )/2ρ(λ )+1.

3.3.5 Proof of Lemma 3.3.4

For any g ∈ {1, . . . ,qe(λ )} we claim that

Pr[ IA
g,g−1(λ ) |b = 0 ] ≤ 2ν(λ )qh(λ )+ν(λ )(ν(λ )−1)

2H∞[L]+1
. (3.11)

Towards justifying this the first observation is that in Ig,g−1 all Enc queries receive

random responses when b = 0 and thus provide the adversary no information about `s.

We would like thence to conclude that the probability of setting bad is at most qh(λ )/2l .

This is true if there are no Dec queries. To obtain a bound in the presence of the latter

we claim

Pr[ IA
g,g−1(λ ) |b = 0 and `1, . . . , `ν(λ ) are distinct ] ≤ Pr[KA

g (λ )] ≤
2ν(λ )qh(λ )

2H∞[L]

where game Kg is in Fig. 3.7. Briefly, when `1, . . . , `ν(λ ) are distinct, the role of ` j can

be played by j as long as queries to the two hash oracles stay different, so that ` j is no

longer referred to by the oracles, allowing us to move the setting of bad to Finalize.
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Main(1λ ) // Kg(λ )

000 For j = 1, . . . ,ν(λ ) do
001 S j← /0
002 For i = 1, . . . ,qe(λ ) do
003 ri, j←${0,1}ρ(λ )

004 i← 0; k←${0,1}κ(λ ); t← /0
005 For j = 1, . . . ,ν(λ ) do ` j← 0`(λ )

006 While |{`1, . . . `ν(λ )}|< ν(λ )
007 For j = 1, . . . ,ν(λ ) do
008 ` j←$ L(1λ )
009 If (T ∩{`1, . . . , `ν(λ )} 6= /0) then
010 bad← true
011 Return bad

proc Enc( j,n,d,φ) // Kg(λ )

100 i← i+1; γ ← cl(ol(φ), |d|)
101 ci←${0,1}γ ; S j← S j∪{(ri, j,d,ci)}
102 If (i = g) then s← j
103 Return (ri, j,ci)

proc IHash(r‖ j) // Kg(λ )

200 If not H ′[r‖ j] then
201 H ′[r‖ j]←${0,1}κ(λ )

202 Return H ′[r‖ j]

proc Hash(r‖`) // Kg

300 If not H[r‖`] then
301 H[r‖`]←${0,1}κ(λ )

302 t← t ∪{`}
303 Return H[r‖`]
proc Dec( j,r,d,c) // Kg(λ )

400 If (r,d,c) ∈ S j then return ⊥
401 If (r‖ j = rg,s ‖s) then
402 m← D(1λ ,k,d,c)
403 Else m← D(IHash(r‖ j),d,c)
404 If m =⊥ then v← 0 else v← 1
405 Return v

Figure 3.7. Game Kg for proof of Lemma 3.3.4 where 1≤ g≤ qe(λ ).

The probability that bad is set is then at most

qh(λ )

2H∞[L]−1
+ · · ·+ qh(λ )

2H∞[L]− (ν(λ )−1)
≤ 2ν(λ )qh(λ )

2H∞[L]
,

the last because we assumed ν(λ ) ≤ 2H∞[L]−1. Since `1, . . . , `ν(λ ) are distinct except

with probability less than ν(λ )(ν(λ )−1)/2H∞[L] we have Equation (3.11).

Below we will construct B2 so that

Pr[EB2(1λ )
1,1 ]−Pr[EB2

0,1(1
λ )]≥ (3.12)

1
qe(λ )

qe(λ )

∑
g=1

(
Pr[ IA

g,g−1(λ ) |b = 1 ]−Pr[ IA
g,g−1(λ ) |b = 0 ]

)
. (3.13)
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Assuming this we have

1
qe(λ )

qe(λ )

∑
g=1

Pr
[

IA
g,g−1(λ )

]
=

1
2qe(λ )

qe(λ )

∑
g=1

(
Pr[ IA

g,g−1(λ ) |b = 1 ]+Pr[ IA
g,g−1(λ ) |b = 0 ]

)
=

1
2qe(λ )

qe(λ )

∑
g=1

(
Pr[ IA

g,g−1(λ ) |b = 1 ]−Pr[ IA
g,g−1(λ ) |b = 0 ]+2Pr[ IA

g,g−1(λ ) |b = 0 ]
)

≤ 1
2

Pr[EB2
1,1(1

λ )]− 1
2

Pr[EB2
0,1(1

λ )]+
1

qe(λ )

qe(λ )

∑
g=1

4ν(λ )qh(λ )+ν(λ )(ν(λ )−1)
2H∞[L]+1

=
1
2

Pr[EB2
1,1(1

λ )]− 1
2

Pr[EB2
0,1(1

λ )]+
4ν(λ )qh(λ )+ν(λ )(ν(λ )−1)

2H∞[L]+1

which proves the lemma.

We now construct B2 so that Equation (3.13) is true. Adversary B2 begins with initializa-

tions

For j = 1, . . . ,ν(λ ) do

` j←$ L(1λ ); S j← /0

For i = 1, . . . ,qe(λ ) do ri, j←${0,1}ρ(λ )

i← 0; g←${1, . . . ,qe(λ )}

Now B2 runs A. It replies to Enc query of A via

i← i+1; c← cl(ol(φ), |d|)

If (i≤ g) then

m←EvalIHash(φ , `1, . . . , `ν(λ ))

If (i≤ g−1) then ci←${0,1}γ(λ )

If (i = g) then s← j; ci←$Enc(d,M)

If i > g then ci←${0,1}γ(λ )
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S j← S j∪{(ri, j,d,ci)}

Return (ri, j,ci)

where Enc in this code is B2’s own encryption oracle. It replies to IHash, Hash queries

as in the games of Fig. 3.5. It replies to Dec query j,R,d,c via

If (r,d,c) ∈ S j then return ⊥

If (r‖` j = rg,s ‖`s) then

v←Dec(d,c)

Return v

Else m← D(1λ ,IHash(r‖` j),d,c)

If m =⊥ then v← 0 else v← 1

Return v

where Dec called in this code is B2’s own decryption oracle. When A halts, adversary

B2 outputs 1 if bad was set and 0 otherwise.

3.3.6 Proof of Lemma 3.3.5

Adversary B3 will perform a hybrid based on the games of Fig. 3.5 but with the twist that

different hybrids are differently weighted. It begins with initializations

For j = 1, . . . ,ν(λ ) do

` j←$ L(1λ ); S j← /0

For i = 1, . . . ,qe(λ ) do ri, j←${0,1}ρ(λ )

i← 0; b←${0,1}; g←${1, . . . ,qe(λ )}; m←${1, . . . ,qe(λ )}

If g = 1 it outputs 0 and halts. Else it picks h at random from {1, . . . ,g−1}. (For this to

make sense the set must be non-empty which is why we only do it if g > 1.)
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Now if m ≥ g then B3 outputs 0 and halts. Else —this happens when 1 ≤ m ≤ g− 1

hence with probability (g−1)/qe(λ )— it runs A. It replies to Enc query ( j,d,φ) of A

via

i← i+1; c← cl(ol(φ), |d|)

If (i≤ g) then

m←EvalIHash(φ , `1, . . . , `ν(λ ))

If (i≤ h−1) then ci←${0,1}γ(λ )

If (i = h) then ci←$Enc(d,m)

If (h < i < g) then ci←$ E(1λ ,IHash(ri, j ‖` j),d,m)

If (i = g and b = 1) then s← j; ci←$ E(1λ ,k,d,m)

If (i = g and b = 0) then s← j; ci←${0,1}γ(λ )

If i > g then ci←${0,1}γ(λ )

S j← S j∪{(ri, j,d,ci)}

Return (ri, j,ci)

where Enc in this code is B3’s own encryption oracle. It replies to IHash, Hash queries

as in the games of Fig. 3.5. It replies to Dec query j,R,d,C via

If (r,d,c) ∈ S j then return ⊥

If (r‖` j = rg,s ‖`s) then

v←Dec(d,c)

Return v

Else c← D(1λ ,IHash(r‖` j),d,c)

If c =⊥ then v← 0 else v← 1

Return v
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where Dec called in this code is B3’s own decryption oracle. When A halts, adversary

B3 outputs 1 if bad was set and 0 otherwise. We have

Pr[EB3
1,1(λ )] =

1
qe(λ )

qe(λ )

∑
g=2

1
g−1

g−1
qe(λ )

g−1

∑
h=1

Pr
[

IA
g,h−1(λ )

]
=

1
qe(λ )2

qe(λ )

∑
g=2

g−1

∑
h=1

Pr
[

IA
g,h−1(λ )

]

and

Pr[EB3
0,1(λ )] =

1
qe(λ )

qe(λ )

∑
g=2

1
g−1

g−1
qe(λ )

g−1

∑
h=1

Pr
[

IA
g,h(λ )

]
=

1
qe(λ )2

qe(λ )

∑
g=2

g−1

∑
h=1

Pr
[

IA
g,h(λ )

]
.

Subtracting we get

Pr[EB3
1,1(λ )]−Pr[EB3

0,1(λ )] =
1

qe(λ )2

qe(λ )

∑
g=2

(
Pr
[

IA
g,0(λ )

]
−Pr

[
IA
g,g−1(λ )

])
=

1
qe(λ )2

qe(λ )

∑
g=1

(
Pr
[

IA
g,0(λ )

]
−Pr

[
IA
g,g−1(λ )

])
.

In the last step we were able to start the summation index at 1 rather than 2 because if

g = 1 then games Ig,0 and Ig,g−1 are the same.
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3.3.7 Proof of Lemma 3.3.6

We have

1
qe(λ )

qe(λ )

∑
g=1

Pr
[

IA
g,0(λ )

]
≤ qe(λ ) ·

(
Pr[EB3

1,1(λ )]−Pr[EB3
0,1(λ )]

)
+

1
qe(λ )

qe(λ )

∑
g=1

Pr
[

IA
g,g−1(λ )

]
≤ qe(λ ) ·

(
Pr[EB3

1,1(λ )]−Pr[EB3
0,1(λ )]

)
+

1
2

(
Pr[EB2

1,1(λ )]−Pr[EB2
0,1(λ )]

)
+

4ν(λ )qh(λ )+ν(λ )(ν(λ )−1)
2H∞[L]+1

. (3.14)

From Lemma 3.3.2, Equation (3.4), Equation (3.5) and Equation (3.14) we have

Pr[FA
1,1(λ )]−Pr[FA

0,1(λ )]

≤ 4qe(λ )
2 ·

3

∑
j=1

(
Pr[EB j

1,1(λ )]−Pr[EB j
0,1(λ )]

)
+

4ν(λ )qe(λ )qh(λ )+ν(λ )(ν(λ )−1)qe(λ )
2H∞[L]

+
2qe(λ )(qh(λ )+2qe(λ )ν(λ ))

2r .

Let adversary B′1 pick j at random in {1,2,3} and run B j. Now apply Lemma 3.3.8

(Appendix 3.3.9) to B′1.

3.3.8 Proof of Lemma 3.3.7

We have

1
qd(λ )

(
Pr[FA

0,1(λ )]−Pr[FA
0,0(λ )]

)
= 2Pr[JA]−1

= 2(Pr[LA(λ )]+Pr[JA(λ )]−Pr[LA(λ )])−1

≤ 2Pr[LA(λ )]−1+2Pr[BAD(LA(λ ))] . (3.15)
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Equation (3.15) follows from the Fundamental Lemma of Game Playing [25] because

games J,L are identical until bad, meaning differ only in code following the setting of

bad to true. To justify Equation (3.15) note that when b = 1, decryption under the first g

keys yields real responses, the rest ⊥, and when b = 0 decryption under the first g−1

keys yields real responses, the rest ⊥. The boxed code ensures that key assignments

remain consistent with responses to Hash queries.

Adversary B4 begins with initializations

For j = 1, . . . ,ν(λ ) do

` j←$ L(1λ ); S j← /0

For i = 1, . . . ,qe(λ ) do ri, j←${0,1}ρ(λ )

g←${1, . . . ,qd(λ )}

For d = 1, . . . ,qd(λ ) do If (d 6= g) then k[d]←$ K(1λ )

i,d← 0

Now B4 runs A. It replies to Enc query j,d,φ of A via

i← i+1; c← cl(ol(φ), |d|) ; ci←${0,1}γ(λ ); S j← S j∪{(ri, j,d,ci)}

Return (ri, j,ci)

B4 replies to Hash query r‖` via

If not H[r‖`] then H[r‖`]←${0,1}κ(λ )

Return H[r‖`]

It replies to Dec query j,r,d,c via

If (r,d,c) ∈ S j then return ⊥

If not Ind[r‖` j] then d← d +1; Ind[r‖` j]← d
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e← Ind[r‖` j]

If (e < g) then m← D(1λ ,k[e],d,c)

If (e = g) then v←Dec(d,c) ; Return v

If (e > g) then m←⊥

If m =⊥ then v← 0 else v← 1

Return v

where Dec called in this code is B4’s own decryption oracle. When A halts with output

b′, so does adversary B4. Think of the key k[g] of game L as being the one underlying

games E0,1,E0,0 for B4. Thus

2Pr[LA(λ )]−1 = Pr[EB4
0,1(1

λ )]−Pr[EB4
0,0(λ )] .

3.3.9 Splitting lemma

Lemma 3.3.8 Let SE = (K,E,D) be a symmetric encryption scheme. Let B1,B2 be

adversaries. Then there are adversaries D1,D2 such that

Pr[EB1
1,1(1

λ )]−Pr[EB1
0,1(1

λ )] ≤ 2 ·AdvaeSE(D1) (3.16)

Pr[EB2
0,1(1

λ )]−Pr[EB2
0,0(1

λ )] ≤ 2 ·AdvaeSE(D2) . (3.17)

The running times and number of oracle queries of D1,D2 equal those of B1,B2 respec-

tively.

Proof: We will construct D1,0,D1,1 such that

Pr[EB1
1,1(1

λ )]−Pr[EB1
0,0(1

λ )] ≤ AdvaeSE(D1,0)

Pr[EB1
0,0(1

λ )]−Pr[EB1
0,1(1

λ )] ≤ AdvaeSE(D1,1) .
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Table 3.2. Table showing relative slowdown of RHtE with SHA256. The entries are
explained in text.

Hash Scheme
RHtE Relative Running Time

KeySetup 5KB 50KB 500KB

SHA256

CCM 2.73 1.11 1.01 1.00
EAX 1.94 1.10 1.01 1.00

GCM-2k 1.66 1.10 1.02 1.00
GCM-64k 1.19 1.09 1.02 1.00

Let D1 pick d ∈ {0,1} at random and run D1,d and Equation (3.16) follows by adding

the equations above. The construction of D1,0 is straightforward. Adversary D1,1 runs B1,

replying to Enc queries by random strings and to Dec queries via its own Dec oracle,

and returns 1−b′ where b′ is the output of B1. The proof of Equation (3.17) is similar

and is omitted.

3.4 Implementation results

We ran RHtE with common AE schemes like CCM, EAX and GCM (with tables

of 2k and 64k entries) to measure the slowdown relative to the original schemes, using

a truncated version of SHA256 as the hash function and setting l = r = k = 128. We

ran these tests using Crypto++ [52], a standard cryptography library. The measurements

in the table of Fig. 3.2 show relative slowdown of RHtE with SHA256 in Crypto++ for

common AE schemes and different message sizes. KeySetup is the relative slowdown

in the keysetup phase alone. GCM-2k and GCM-64k correspond to GCM implemented

with tables of corresponding size.

These correspond to a Intel Core i5 M460 64-bit CPU running at 2.53 GHz with

code compiled using g++ -O3 for data sizes small enough to fit in the level 2 cache.

For our purposes, the relative performance of these routines is of more importance.
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From Fig. 3.2, we can observe that even at modest message sizes of around 50KB, the

slowdown due to RHtE is no more than 1%. Futhermore, if algorithms like GCM are

implemented with large tables and in turn a lot of precomputation in the key-setup phase,

the RHtE overhead is even less noticeable.
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Chapter 4

Message-Locked Encryption

4.1 Overview

To save space, commercial cloud storage services such as Google Drive [69],

Dropbox [56] and bitcasa [28] perform file-level deduplication across all their users. Say

a user Alice stores a file M and Bob requests to store the same file M. Observing that M is

already stored, the server, instead of storing a second copy of M, simply updates metadata

associated to M to indicate that Bob and Alice both stored M. In this way, no file is

stored more than once, moving storage costs for a file stored by u users from O(u · |M|)

to O(u+ |M|) where the big-O notation hides implementation-dependent constants.

However, as users we may want our files to be encrypted. We may not want the

storage provider to see our data. Even if we did trust the provider, we may legitimately

worry about errant employees or the risk of server compromise by an external adver-

sary. When users themselves are corporations outsourcing their data storage, policy or

government regulation may mandate encryption.

Message-Locked Encryption (MLE) is an intriguing new primitive in which the

key used for encryption and decryption is itself derived from the message. Instances of

this primitive have been seeing widespread deployment and application for the purpose

of secure deduplication [28, 112, 49, 2, 51, 10, 50, 91, 106, 98, 3, 65, 58]. We provide a

91
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theoretical treatment towards investigating the security of these applications, by providing

definitions of privacy and integrity peculiar to this domain. Subsequently, we utilize the

theoretical framework to explore practical and theoretical improvements. In the practical

side, we analyze existing schemes and new variants, breaking some and justifying others

with proofs in the random-oracle-model (ROM) [22]. In the theoretical side we address

the challenging question of finding a standard-model MLE scheme, making connections

with deterministic public-key encryption [12], correlated-input-secure hash functions [70]

and locally-computable extractors [8, 88, 107] to provide schemes exhibiting different

trade-offs between assumptions made and the message distributions for which security is

proven. From our treatment MLE emerges as a primitive that combines practical impact

with theoretical depth and challenges, making it well worthy of further study and a place

in the cryptographic pantheon. Below we provide a high level overview of the rest of this

chapter, before proceeding with the details.

Commercial storage services need deduplication to keep costs low, and users

want their data to be encrypted. Conventional encryption, however, makes deduplication

impossible. Say Alice stores not her file M but its encryption cA under her password pA.

Bob would store cB, the encryption of M under his password pB. Two issues arise: (1)

how the server is to detect that the data underlying the two ciphertexts is the same, and

(2) even if it can so detect, what can it store short of (cA,cB) that allows both parties,

based on their separate respective passwords, to recover the data from what is stored.

Standard IND-CPA encryption means even (1) is not possible. We might use some kind

of searchable encryption [105, 35, 12] but it is still not clear how to solve (2). Just storing

Alice’s ciphertext, for example, does not work because Bob cannot later decrypt it to

recover the file, and visa versa.

Douceur et. al. (DABST) [55] proposed a clever solution called convergent

encryption (CE). Alice derives a key k = H(M) from her message M and then encrypts
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the message as c = E(k,M) = E(H(M),M), where H is a cryptographic hash function

and E is a block cipher. (They assume the message is one block long.) The ciphertext is

given to the server and the user retains k. Since encryption is deterministic, if Bob starts

from the same message he would produce the same key and ciphertext. The server can

now perform deduplication on the ciphertext c, checking, when it receives c, whether or

not it is already stored, and, if the latter, as before, not re-storing but instead updating

meta-data to indicate an additional owner. Both Alice and Bob can decrypt c since both

have the same key k.

These ideas have been attractive enough to see significant usage, with CE or

variants deployed in [112, 28, 49, 91, 106, 98, 3, 65, 58]. It is not however clear what

precisely is the underlying security goal and whether deployed schemes achieve it.

We introduce Message-Locked Encryption (MLE) —so named because the mes-

sage is locked, as it were, under itself— with the goal of providing an encryption primitive

that provably enables secure deduplication. As depicted in Fig. 4.2, the key generation

algorithm of an MLE scheme K maps a message m to a key k. The encryption algorithm

E takes input the key k and a message m and produces a ciphertext c. The decryption

algorithm D allows recovery of m from c given the key k. The tagging algorithm T maps

the ciphertext c to a tag t used by the server to detect duplicates. (Tag correctness requires

that tags corresponding to messages m1,m2 are likely to be the same iff m1,m2 are the

same.) All algorithms may depend on a parameter p but the latter is public and common

to all parties including the adversary, and thus is not a key.

Any MLE scheme enables deduplication of ciphertexts. CE is captured by our

syntax as the MLE scheme that lets k = H(m), c = E(k,m) and tag t = H(c).

MLE is trivially achieved by letting the key k equal the message m. Set c = t = ε

to the empty string and have decryption simply return the key. This degenerate solution

is however useless for deduplication since the client stores as k the entire file and no
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storage savings result. We rule it out by requiring that keys be shorter than messages,

ideally keys are of a fixed, short length.

Privacy

No MLE scheme can achieve semantic-security-style privacy in the spirit

of [67, 15]. Indeed, if the target message m is drawn from a space S of size s then

an adversary, given an encryption c of m, can recover m in O(s) trials. For each candidate

m′ ∈ S test whether D(K(m′),c) = m′ and if so return m′. As with deterministic public-

key encryption [12], we therefore ask for the best possible privacy, namely semantic

security when messages are unpredictable (have high min-entropy). Adapting definitions

from [12, 16, 13, 39] we formalize a PRV-CDA notion where encryptions of two unpre-

dictable messages should be indistinguishable. (“cda” stands for “chosen-distribution

attack” [13].) We also formalize a stronger PRV$-CDA notion where the encryption of

an unpredictable message must be indistinguishable from a random string of the same

length (cf. [103]).

These basic notions are for non-adaptive adversaries. The corresponding adaptive

versions are PRV-CDA-A and PRV$-CDA-A. We show that PRV-CDA does not imply

PRV-CDA-A but, interestingly, that PRV$-CDA does imply PRV$-CDA-A. See the right

hand side of Fig. 4.1 for a comprehensive relations summary. In the figure, an arrow

X→Y means we can construct primitive Y from primitive X. Dark arrows are our results

while light arrows indicate trivial or known implications. Thus PRV$-CDA emerges

as the preferred target for designs because non-adaptive security is easier to prove yet

adaptive security is implied.

Tag consistency

Suppose client Alice has a message mA and client Bob has a different message

mB. Alice is malicious and uploads not an honest encryption of mA but a maliciously-
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generated ciphertext cA such that, when Bob tries to upload cB, the server sees a tag match

T(cA) =T(cB). This does not contradict the correctness requirement that tags are usually

equal iff the messages are equal because that holds for honestly-generated ciphertexts.

The server thus keeps only cA, deleting cB. Yet later, when Bob downloads to get cA, the

decryption is mA, not mB, meaning the integrity of his data has been compromised.

This is a serious concern, and not mere speculation, for such “duplicate-faking”

attacks have been found on some CE variants [106]. We define tag consistency to rule

out these types of integrity violations. Notion TC asks that it be hard to create (m,c)

such that T(c) =T(E(K(m),m)) but D(K(m),c) is a string different from m. In words,

an adversary cannot make an honest client recover an incorrect message, meaning one

different from the one it uploaded. Notion STC (“S” for “strong”) asks that it additionally

be hard to create (m,c) such that T(c) =T(E(K(m),m)) but D(K(M),c) =⊥, meaning

an adversary cannot erase an honest client’s message. STC is strictly stronger than TC;

we define both because, as we will see, some schemes meet only the weaker, but still

meaningful, TC version.

Practical Contributions

The definitional framework outlined above puts us in a position to rigorously

assess —a decade after its inception in [55]— the security of convergent encryption (CE).

The task is complicated by the presence and deployment of numerous variants of the

basic CE idea. We address this by formulating two MLE schemes, that we call CE and

HCE1, that represent two major variants of CE and between them capture the prominent

existing schemes. They each make use of a RO hash function H and a deterministic

symmetric encryption scheme SE. CE with SE set to a blockcipher, for example, is the

scheme of [55] and HCE1 with SE as a blockcipher in counter mode with fixed IV is used

within the Tahoe FileSystem (TahoeFS) [112].

CE sets k = H(m), c = SE(k,m) and tag t = H(c), while HCE1 sets k = H(m),
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c = SE(k,m)‖H(k) and t = H(k). The rationale for HCE1 is to offer better performance

for the server who can simply read the tag as the second part of the ciphertext rather than

needing to compute it by hashing the possibly long ciphertext. But we observe that HCE1

is vulnerable to duplicate faking attacks, meaning it does not even achieve TC security.

We discuss the implications for the security of TahoeFS in Section 4.3.

We ask whether performance gains of the type offered by HCE1 over CE can be

obtained without loss in consistency, and offer as answers two new schemes, HCE and

RCE. The former is as efficient as HCE1. RCE however is even more efficient, needing

just one concerted pass over the data to generate the key, encrypt the message and produce

the tag. On the other hand, HCE needs two passes, one pass to generate the key and a

second for encryption, while CE needs a third pass for producing the tag. RCE achieves

this via a novel use of randomization (all previous schemes were deterministic). Roughly

(see Fig. 4.4), encryption picks a fresh random key L and then computes SE(L,m) and

k = H(m) in the same pass, finally placing an encryption of L under k, together with an

appropriate tag, in the ciphertext. We have implemented all three schemes and the results

(cf. Appendix 4.7) show that RCE does indeed outperform the other two.

Fig. 4.1 (table, first four rows) summarizes the findings of our security analysis of

the four schemes. Here, for each MLE scheme that we construct, we indicate whether it is

in the RO or standard model; whether it is deterministic or randomized; and which security

properties it is proven to possess. The assumptions for XtCIH, XtDPKE and XtESPKE

are, respectively, a CI-H function, a D-PKE scheme and an ES-PKE scheme, while the

others assume only a symmetric encryption scheme. Under standard assumptions on

the deterministic symmetric encryption scheme SE (one-time real-or-random ciphertext,

or ROR, security as well as key-recovery security) and with H a RO, we show that all

four MLE schemes meet our strong privacy notion PRV$-CDA. The consistency findings

are more involved. As mentioned, HCE1 provides no tag consistency. The good news
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is that CE, HCE and RCE all achieve TC security, so that an adversary cannot make a

client recover a file different from the one she uploaded. But only CE offers STC security,

implying that the reduction in server cost offered by HCE1, HCE and RCE comes at a

price, namely loss of STC-security. The conclusion is that designers will need to trade

performance for strong tag consistency. Whether this is fundamental or if better schemes

exist is an interesting open question.

Theoretical Contributions

Is MLE possible in the standard-model? This emerges as the natural and most

basic theoretical question in this domain. Another question is, how does MLE relate

to other (existing) primitives? MLE has in common with Deterministic Public-Key

Encryption (D-PKE) [12] and Correlated-input-secure Hash Functions (CI-H) [70] a goal

of privacy on unpredictable but possibly related inputs, so it is in particular natural to

ask about the relation of MLE to these primitives. The two questions are related, for

showing that a primitive X implies MLE yields a construction of an MLE scheme based

on X. In exploring these questions it is instructive to distinguish between D-MLE (where

encryption is deterministic) and R-MLE (where encryption may be randomized). The

connections we now discuss are summarized by the picture on the right side of Fig. 4.1:

• D-PKE⇒ D-MLE: We show how to construct an MLE scheme from any D-PKE

scheme that is PRIV-secure in the sense of [12]. The first idea that may come

to mind is to make public a public key ek for the D-PKE scheme DE and MLE-

encrypt m as DE(ek,m). But this does not make sense because dk is needed to

decrypt and the latter is not derived from m. Our XtDPKE (“extract-then-D-PKE”)

solution, specified and proven in Section 4.4, is quite different and does not exploit

the decryptability of DE at all. We apply a strong randomness extractor to m to get

the MLE key k and then encrypt m bit-by-bit, the encryption of the i-th bit m[i] being
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Scheme Model D/R
Privacy Integrity

PRV-CDA prv$-cda TC STC

CE RO D 3 3 3 3

HCE1 RO D 3 3 7 7

HCE RO D 3 3 3 7

RCE RO R 3 3 3 7

XtCIH STD D 3 3 3 3

XtDPKE STD D 3 7 3 3

XtESPKE STD R 3 7 3 3

SXE STD D 3 3 3 3

CI-H

D-MLE
(prv$-cda)

D-MLE
(PRV-CDA)

D-PKE

ES-PKE

R-MLE
(prv$-cda)

R-MLE
(PRV-CDA)

Figure 4.1. Security properties of constructed MLE schemes (top) and relations between
security notions (bottom).

c[i] = DE(ek,k‖i‖m[i]). Decryption, given k, is done by re-encrypting, for each i,

both possible values of the i-th message bit and seeing which ciphertext matches

c[i]. We assume a trusted generation of ek in which nobody retains dk. XtDPKE has

PRV-CDA privacy and provides STC (strong) tag consistency.

• CI-H⇔ D-MLE: Our XtCIH (“extract-then-CI-Hash”) scheme derives a D-MLE

scheme from any CI-H hash function [70] by using the latter in place of the D-PKE

scheme in the above. XtCIH is PRV$-CDA private while retaining STC consistency.

Conversely, any PRV$-CDA D-MLE scheme can be used to construct a CI-H hash

function, making the primitives equivalent.

We believe these results are interesting as connections between prominent primitives.
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However, they do not, right now, yield MLE schemes under standard assumptions because

providing the required D-PKE schemes or CI-H functions under such assumptions is still

open and deemed challenging. Indeed, Wichs [110] shows that secure D-PKE schemes

or CI-H functions may not be obtained via blackbox reductions from any assumption

that may be modeled as a game between an adversary and a challenger. We note that his

result applies to D-MLE as well but, as far as we can tell, not to R-MLE. One potential

route to MLE with standard assumptions may thus be to exploit randomization but we

are unaware of how to do this beyond noting that XtDPKE extends to a R-MLE scheme

XtESPKE based on any ES-PKE (Efficiently Searchable PKE) scheme [12], a weaker

primitive than D-PKE.

In the D-PKE domain, progress was made by restricting attention to special

message distributions. In particular D-PKE under standard assumptions have been

achieved for independent messages or block sources [16, 32, 39, 60]. CI-H functions have

been built for messages given by polynomials evaluated at the same random point [70]. It

is thus natural to ask whether we can obtain MLE under standard assumptions for special

message distributions. One might think that this follows from our D-PKE⇒ D-MLE

and CI-H⇒ D-MLE constructions and the known results on D-PKE and CI-H, but this

is not the case because our constructions do not preserve the message distribution.

The final contribution we mention here is MLE schemes under standard assump-

tions for certain classes of message distributions. Our SXE (Sample-extract-encrypt)

MLE scheme is inspired by locally-computable extractors [8, 88, 107] and the sample-

then-extract paradigm [107, 95]. The idea is to put a random subset of the message

bits through an extractor to get a key used to encrypt the rest of the bits, and the only

assumption made is a standard, ROR-secure symmetric encryption scheme.

Related Work

There are folklore suggestions along the lines of CE predating [55]. See [97].
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We have introduced an indistinguishability-from-random notion (PRV$-CDA) for MLE

and showed that it implied its adaptive counterpart. This is of broader interest for the

parent settings of deterministic and hedged encryption. Here achieving adaptive security

has been challenging [13]. We suggest that progress can be made by defining and then

targeting indistinguishability-from-random style definitions.

Mironov, Pandey, Reingold and Segev [93] suggest deduplication as a potential

application of their incremental deterministic public-key encryption scheme. But this

will only work with a single client. It won’t allow deduplication across clients, since they

would all have to share the secret key.

Recent work showed that client-side deduplication gives rise to side-channel

attacks because users are told if another user already uploaded a file [80]. MLE is

compatible with either client- or server-side deduplication (the latter prevents such side-

channels). We note that one of our new schemes, RCE, gives rise to such a side-channel

(see Section 4.3). MLE targets a different class of threats than proofs of ownership [76],

which were proposed for deduplication systems in order to mitigate abuse of services

for surreptitious content distribution. In independent and concurrent work, Xu, Chang

and Zhou [113] consider leakage resilience in the deduplication setting. They provide a

randomized construction similar to RCE.

4.2 Message-Locked Encryption

We now look at the syntax and correctness requirements of message-locked

encryption.

SYNTAX AND CORRECTNESS. An MLE scheme MLE = (P,K,E,D,T) is a five-tuple

of PT algorithms, the last two deterministic — see Fig. 4.2. The parameter generation

algorithm is not shown. On input 1λ the parameter generation algorithm P returns

a public parameter p. On input p and a message m, the key-generation algorithm
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M KP K

EP C

DP M

TP T

prv$-cda

PRV-CDA

PRV$-CDA-A

PRV-CDA-A

Figure 4.2. Left: Depiction of syntax of MLE scheme MLE = (P,K,E,D,T). Right:
Relations between notions of privacy for MLE schemes.

K returns a message-derived key k←$ K(1λ , p,m). On inputs p,k,m the encryption

algorithm E returns a ciphertext c←$ E(p,k,m). On inputs p,k and a ciphertext c,

the decryption algorithm D returns D(p,k,c) ∈ {0,1}∗ ∪{⊥}. On inputs p,c the tag

generation algorithm returns a tag T ←T(p,c). Associated to the scheme is a message

space MMLE that associates to any λ ∈ N a set MMLE(λ ) ⊆ {0,1}∗. We require that

there is a function Cl such that, for all λ ∈ N, all p ∈ [P(1λ )] and all m ∈ {0,1}∗, any

output of E(p,K(1λ , p,m),m) has length Cl(p,λ , |m|), meaning the length of a ciphertext

depends on nothing about the message other than its length. The decryption correctness

condition requires that D(p,k,c) = m for all λ ∈ N, all p ∈ [P(1λ )], all m ∈MMLE(λ ),

all k ∈ [K(1λ , p,m)] and all c ∈ [E(p,k,m)]. The tag correctness condition requires

that there is a negligible function δ : N→ [0,1], called the false negative rate, such

that Pr[T(p,c) 6=T(p,c′)]≤ δ (λ ) for all λ ∈ N, all p ∈ [P(1λ )] and all m ∈MMLE(λ ),

where the probability is over c←$ E(p,K(1λ , p,m),m) and c′←$ E(p,K(1λ , p,m),m).

We say that MLE is deterministic if K and E are deterministic. We observe that if MLE is

deterministic then it has perfect tag correctness, meaning a false negative rate of 0.
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In the application to secure deduplication, the server publishes p and maintains a

database that we view as a table Da, initially everywhere ⊥. In the UPLOAD protocol,

the client, having p,m, computes k←$ K(1λ , p,m) and c←$ E(p,k,m). The client stores

k securely. (It may do so locally or store k encrypted under its password on the server,

but the implementation is not relevant here.) It sends c to the server. The latter computes

T ← T(p,c). If Da[T ] = ⊥ then it lets Da[T ]← c. The server provides the client

with a filename or pointer that we may, for simplicity, just view as the tag T . In the

DOWNLOAD protocol, the client sends the server a tag T and the server returns Da[T ].

If Alice uploads M and Bob later does the same, tag correctness means that their tags

will most likely be equal and the server will store a single ciphertext on their behalf.

Downloads will return to both this common ciphertext c, and decryption correctness

guarantees that both can decrypt c under their respective (although possibly different)

keys to recover m.

A trivial construction of an MLE scheme MLE = (P,K,E,D,T) may be obtained

by setting the key to the message. In more detail, let P(1λ ) = ε; let Kε(m) = m; let

Eε(m,m) =Tε(c) = ε; let Dε(m,c) = m. This will meet the decryption and tag correct-

ness conditions besides meeting the security requirements (privacy and tag consistency)

we will formalize below. However, this scheme is of no use for deduplication because the

client stores the entire file as the key and no storage savings are gleaned. To avoid this

kind of degenerate scheme, we insist that an MLE scheme have keys that are shorter than

the message. Formally, there must be a constants c,d < 1 such that the function that on

input λ ∈N returns maxp,m Pr[|K(1λ , p,m)|> d · |m|c] is negligible where the probability

is over the choices of K and the maximum is over all p ∈ [P(1λ )] and all m ∈MMLE(λ ).

Particular schemes we construct or analyze, however, do much better, with the key-length

for most of them depending only on the security parameter.

Our formulation of search via tag comparison enables fast search: the server can
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use the tag to index directly into a table or perform a logarithmic-time binary search as

in [12]. These requirements could be relaxed to define MLE variants where search was

allowed linear time (cf. [35]) or search ability was not even provided. MLE does not

appear easy to achieve even in the last case.

Privacy

As we noted in Section 4.1, no MLE scheme can provide privacy for predictable

messages, meaning ones drawn from a space of polynomial size, in particular ruling out

classical semantic security. We now formalize two notions of privacy for unpredictable

messages. A source is a PT algorithm S that on input 1λ returns (m0, . . . ,mn−1,z) where

m0, . . . ,mn−1 are vectors over {0,1}∗ and z ∈ {0,1}∗. Here n ≥ 1 is a constant called

the arity of the source. We will only consider n ∈ {1,2}. We require that all the vectors

have the same length µ(λ ) for some function m called the number of messages of the

source. We require that there is a function `, called the message length of the source,

such that the string m j[i] has length `(λ , i) for all i ∈ [µ(λ )] and all j ∈ {0, . . . ,n−1}.

We require that m j[i1] 6= m j[i2] for all distinct i1, i2 ∈ [µ(λ )] and all j ∈ {0, . . . ,n−1},

meaning the entries of each vector are distinct. We refer to z as the auxiliary information.

The guessing probability gS of source S is defined as the function which on input λ ∈ N

returns maxi, j GP(m j[i] |z) where the probability is over (m0, . . . ,mn−1,z)←$ S(1λ ) and

the maximum is over all i ∈ [µ(λ )] and all j ∈ {0, . . . ,n− 1}. We say that S is unpre-

dictable if gS(·) is negligible. Meaning, messages are unpredictable given the auxiliary

information. We do not require that the components m j[1], . . . ,m j[µ(λ )] of a vector are

independent, just that each, individually, is unpredictable. We refer to − log(gS(·)) as the

min-entropy of the source. We say that S is MLE-valid if m j[i] ∈MMLE(λ ) for all λ ∈ N,

all (m0, . . . ,mn−1,z) ∈ [S(1λ )], all i ∈ [µ(λ )] and all j ∈ {0, . . . ,n−1}.

In the games of Fig. 4.3, “CDA” stands for “Chosen-Distribution Attack,” re-

ferring to the distribution on messages imposed by the MLE-valid source S, which in
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Main PRV-CDAA
MLE,S(λ )

p←$ P(1λ ); b←${0,1}
(m0,m1,z)←$ S(1λ )

For i = 1, . . . , |mb| do
c[i]←$E(1λ , p,K(1λ , p,mb[i]),mb[i])

b′←$ A(1λ , p,c,z); Return(b = b′)

Main PRV$-CDAA
MLE,S(λ )

p←$ P(1λ ) ; b←${0,1}; (m,z)←$ S(1λ )

For i = 1, . . . , |m| do
c1[i]←$E(1λ , p,K(1λ , p,m[i]),m[i])
c0[i]←${0,1}|c1[i]|

b′←$ A(1λ , p,cb,z); Return(b = b′)

Main TCA
MLE(λ ) STCA

MLE(λ )

p←$ P(1λ ) ; (m,c′)←$ A(1λ , p)
If (m =⊥) or (c′ =⊥) then return false

t←$T(1λ , p,E(1λ , p,K(1λ , p,m),m))

t ′←$T(1λ , p,c′); m′←$D(1λ , p,K(1λ , p,m),c′)
If (t = t ′) and (m 6= m′) and (m′ 6=⊥) then return true else return false

Figure 4.3. Games defining PRV-CDA, PRV$-CDA privacy and TC, STC tag consis-
tency security of MLE scheme MLE = (P,K,E,D,T).

game PRV-CDA has arity 2 and in game PRV$-CDA has arity 1. If A is an adver-

sary we let Advprv-cdaMLE,S,A(λ ) = 2 · Pr[PRV-CDAA
MLE,S(λ )]− 1 and Advprv$-cda

MLE,S,A(λ ) = 2 ·

Pr[PRV$-CDAA
MLE,S(λ )]−1. We say that MLE is PRV-CDA (resp. PRV$-CDA) secure

over a class S of PT, MLE-valid sources if Advprv-cdaMLE,S,A(·) (resp. Advprv$-cda
MLE,S,A(·)) is negligi-

ble for all PT A and all S ∈ S. We say that MLE is PRV-CDA (resp. PRV$-CDA) secure

if it is PRV-CDA (resp. PRV$-CDA) secure over the class of all PT, unpredictable MLE-

valid sources. PRV-CDA asks for indistinguishability of encryptions of two unpredictable

messages and is based on formalizations of deterministic [12, 16, 39] and hedged [13]

PKE. PRV$-CDA is a new variant, asking for the stronger property that encryptions of

unpredictable messages are indistinguishable from random strings, an adaption to this

setting of the corresponding notion for symmetric encryption from [103].

The source is not given the parameter p as input, meaning privacy is only assured

for messages that do not depend on the parameter. This is analogous to the restriction that

messages do not depend on the public key in D-PKE [12], and without this restriction,
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privacy is not possible. However, the adversary A does get the parameter.

The notions here are non-adaptive in the sense that the distribution of the next

message does not depend on the previous ciphertext. In Appendix 4.5 we give corre-

sponding adaptive definitions PRV-CDA-A and PRV$-CDA-A, and prove the relations

summarized in Fig. 4.2. Here, an arrow from A to B means that any A-secure MLE

scheme is also B-secure. A barred arrow means there is an A-secure MLE scheme that

is not B-secure. The one we highlight is that the non-adaptive PRV$-CDA implies its

adaptive counterpart. This is not true for PRV-CDA and makes PRV$-CDA preferable to

achieve.

Tag consistency

Consider the games of Fig. 4.3 and let A be an adversary. Game TCMLE includes

the boxed statement, while STCMLE does not. We let AdvTCMLE,A(λ ) = Pr[TCA
MLE(λ )]

and AdvSTCMLE,A(λ ) = Pr[STCA
MLE(λ )]. We say that MLE is TC (resp. STC) secure if

AdvTCMLE,A(·) (resp. AdvSTCMLE,A(·)) is negligible.

Tag consistency (TC) aims to provide security against duplicate faking attacks

in which a legitimate message is undetectably replaced by a fake one. In such an

attack we imagine the adversary A creating and uploading c′. Later, an honest client,

holding m (the formalism allows A to pick m) computes k←$ K(1λ , p,m) and uploads

c←$ E(1λ , p,k,m). The server finds that the tags of c and c′ are equal and thus continues

to store only c′. Later, the honest client downloads c′ and decrypts under k. It expects to

recover m, but in a successful duplicate-faking attack it recovers instead some message

m′ 6= m. The integrity of its data has thus been violated. TC security protects against this.

Note that TC explicitly excludes an attack in which m′ =⊥. Thus TC secure schemes

may still admit duplicate faking attacks that lead to erasures: a client can detect corruption

but no longer be able to recover their message. STC (strong tag consistency) aims to

additionally provide security against such erasure attacks. In terms of implications, STC
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implies TC but TC does not imply STC.

Duplicate faking attacks are not just a theoretical concern. They were first

discussed in [106], yet currently deployed schemes are still vulnerable, as we’ll see in the

next section. Discussions with practitioners suggest that security against them is viewed

as an important requirement in practice.

Given any TC secure scheme, we can prevent all of the attacks above by having a

client, upon being informed that her ciphertext is already stored, download it immediately

and check that decryption yields her message. If not, she complains. This however is not

optimal, being expensive and leading to deduplication side-channels (cf. [80]).

If an MLE scheme is deterministic, letting the tag equal the ciphertext will

result in a scheme that is STC secure. (In a strong sense, for the advantage of even a

computationally unbounded adversary is 0 in either case. We omit the simple proof.)

This provides a relatively easy way to ensure resistance to duplicate faking attacks, but

the price paid is that the tag is as long as the ciphertext. CR-hashing the ciphertext (still

for a D-MLE scheme) preserves STC, but for efficiency other, less effective options have

been employed in practice, as we will see.

In lifting the privacy definitions to the ROM, we do not give the source access to

H. This is to simplify our proofs. Our methods and proofs can be extended to handle

sources with access to H under an extension of the definition of unpredictability to this

setting in which, following [13, 99], the unpredictability of the source is independent of

the coins underlying H.

4.3 Practical Contributions

We propose two new practical MLE schemes, and compare these with two in-

use MLE schemes. Fig. 4.4 provides pseudocode for all four schemes. All schemes

inherit their message space from SE (typically {0,1}∗), use as parameter generation
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KH, and share a common key generation algorithm. All schemes generate keys as

k← H(1λ , p,m). Schemes HCE1 and HCE additionally use the same encryption and tag

generation algorithms.

Ingredients

The schemes are built from a one-time symmetric encryption scheme and a hash

function family H = (KH,H). The former is a tuple of algorithms SE = (SK,SE,SD):

key generation SK, on input 1λ , outputs a key k of length κ(λ ); deterministic encryption

SE maps a key K and plaintext m to a ciphertext c; and deterministic decryption SD maps

a key k and ciphertext c to a message m. We require that Pr[SD(k,SE(k,m)) = m] = 1

for all λ ∈ N, all k ∈ [SK(1λ )], and all m ∈ {0,1}∗. We assume that there exists a

function clSE such that for all λ ∈ N and all m ∈ {0,1}∗ any output of SE(k,m) has

length clSE(λ , |m|). For simplicity we assume that H and SE are compatible: H(kh,m)

outputs a message of length κ(λ )(λ ) for any kh ∈ [KH(1λ )].

We require schemes that provide both key recovery security and one-time real-or-

random security [103]. Let game KRSE, on input 1λ , run the adversary A. The latter can

query at most once to an encryption oracle Enc a message m to which the game replies

with an encryption of m under a freshly chosen key k. Adversary A outputs a bit string

k′ and wins if k′ = k. Advantage is defined as Advkr
SE,A(λ ) = Pr[KRA

SE(1
λ )] and we say

that SE is KR-secure if Advkr
SE,A(·) is a negligible function for any PT A.

Let game RORSE on input 1λ , first choose a random bit b, and then run the

adversary A. Adversary A can make multiple queries to an encryption oracle Enc,

each query a plaintext m ∈ {0,1}∗. If b = 1, then Enc will first choose a random key

k←$ SK(1λ ) and return c← SE(k,m). Note that each encryption query chooses a fresh

key. If b = 0, then Enc will just return a random bit string of length clSE(λ , |m|). To win,

the adversary should guess b. Advantage is defined as Advror
SE,A(λ ) = 2·Pr[RORA

SE(1
λ )]−

1 and we say that SE is ROR-secure if Advror
SE,A(·) is a negligible function for any PT A.
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The four schemes

The first scheme, that we simply call convergent encryption (CE), generalizes

the original scheme of DABST [55]. CE encrypts by hashing the message to generate a

symmetric key k, which is then used to encrypt the message using SE. Tags are computed

by hashing the entire ciphertext. One could alternatively use the ciphertext itself as the

tag, but this is typically not practical.

The second scheme, HCE1 (Hash-and-CE 1), is a popular variant of the CE

scheme used in a number of systems [112, 51, 58, 50]. Compared to CE, HCE1 computes

tags during encryption by hashing the per-message key and including the result in the

ciphertext. Tag generation just extracts this embedded tag. This offloads work from the

server to the client and reduces the number of passes needed to encrypt and generate a

tag from three to two.

HCE1 is vulnerable to attacks that break TC security, as first discussed in [106].

The attack is straightforward: adversary A chooses two messages m 6= m′, computes c←

SE(1λ ,H(1λ , p,m),m′) and t← H(1λ , p,H(1λ , p,m)), and finally outputs (m,c‖ t). This

means an adversary, given knowledge of a user’s to-be-stored message, can undetectably

replace it with any arbitrary message of the adversary’s choosing. In TahoeFS’s use of

HCE1, the client additionally stores a message authentication code (MAC) computed

over the message, and checks this MAC during decryption. This means that the TC attack

against HCE1 would be detected. TahoeFS is, however, still vulnerable to erasure attacks.

We have reported this to the developers, and are discussing possible fixes with them.

We suggest a new scheme, HCE, that modifies HCE1 to directly include a mech-

anism, that we call guarded decryption, that helps it to achieve TC security. in the

ciphertext by recomputing the tag using the just-decrypted message. The decryption

routine now additionally checks the tag embedded If the check fails, then ⊥ is returned.

As we argue below, this provably ensures TC security (but not STC).
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For performance in practice, the important operation is deriving the ciphertext

and tag from the message. This involves generating the key, followed by encryption and

tag generation. CE requires three full passes to perform encryption and tag generation,

while HCE1 and HCE require two. This is fundamental: deterministic MLE schemes

that output bits of ciphertext before processing most of the message will not achieve

PRV-CDA security.

The fourth scheme, Randomized Convergent Encryption (RCE), takes advantage

of randomization to give a version of HCE that can generate the key, encrypt the message,

and produce the tag, all together, in a single pass. RCE accomplishes this by first picking

a random symmetric encryption key ` and then encrypting the message with `, and

deriving the MLE key k in a single pass. Finally it encrypts ` using k as a one-time pad,

and derives the tag from k. Like HCE it uses guarded decryption. It is easy to verify

decryption correctness. Tag correctness follows as the tags are all deterministic.

Privacy

We prove the prv$-cda security of the four schemes when modeling H as a RO.

In Appendix 4.6 we give a concrete-security statement together with proof that covers all

four schemes. The following theorem ends up an easy corollary.

Theorem 4.3.1 Let H be a RO and let SE = (SK,SE,SD) be a one-time symmetric

encryption scheme with key length κ(λ )(·). Then if SE is both KR-secure and ROR-

secure, the scheme XXX[SE,H] for XXX ∈ {CE,HCE1,HCE,RCE} is prv$-cda-secure.

TAG CONSISTENCY. We turn to security in the sense of tag consistency. As discussed in

Section 5.2.1, any deterministic scheme is STC-secure when tags are CR-hashes of the

ciphertext. So too with CE. For HCE and RCE, a straightforward reduction establishes

the following theorem. We omit the details.
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Scheme Encrypt Tag Decrypt
E(1λ , p,k,m) T(1λ , p,c) D(1λ , p,k,c)

CE[SE,H]

Convergent
Encryption

c← SE(k,m)
Return c

H(1λ , p,c) SD(k,c)

HCE1[SE,H]

Hash and CE
w/o tag check

T ← H(1λ , p,k)
c← SE(k,m)
Return c‖T

c1 ‖ t← c
Return t

c1 ‖ t← c
Return SD(1λ ,k,c)

HCE[SE,H]

Hash and CE
w/ tag check

c1 ‖T ← c
m← SD(1λ ,k,c)
T ′← H(1λ , p,H(1λ , p,m))
If T ′ 6= T then ⊥
Returnm

RCE[SE,H]

Randomized
Convergent
Encryption

L←${0,1}κ(λ )

T ← H(1λ , p,k)
c1← SE(L,m)
c2← L⊕k
Returnc1 ‖c2 ‖T

c1 ‖c2 ‖ t← c
Returnt

Parse c as c1,c2,T
L← c2⊕k
m← SD(L,c1)
T ′← H(1λ , p,H(1λ , p,m))
If T ′ 6= T then Return⊥
Ret m

Figure 4.4. MLE schemes built using symmetric encryption scheme SE and hash function
family H.

Theorem 4.3.2 Let SE = (SK,SE,SD) be a one-time symmetric encryption scheme and

let H = (KH,H) be a hash function family. If H is CR-secure then HCE[SE,H] and

RCE[SE,H] are TC-secure.

HCE and RCE are not STC-secure, by the same attack as used against the TC

security of HCE1. (The tag check makes it so that decryption outputs m′ =⊥.) One could

in theory achieve STC security using non-interactive zero-knowledge proofs [30], but

this would obviate the speedups offered by the schemes compared to CE. We conclude

that finding fast, STC-secure schemes with O(1) tag generation is an interesting open

problem, surfaced by our definitions and results above.

Discussion

The above schemes use a hash function family H. In practice, we might use

SHA-256 or SHA-3, and key them appropriately by choosing a uniform bit string to
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prepend to messages. In Appendix 4.7 we explore various instantiations of the MLE

schemes, including ones that implement the hash function by way of a block cipher. This

specifically yields MLE schemes entirely built from AES, which provides efficiency

benefits due to widespread hardware support for AES (i.e., AES-NI). We also report on

performance there.

4.4 Constructions without ROs

We present a paradigm for constructing MLE schemes that we call Extract-Hash-

Check. In particular this paradigm yields standard model constructions of MLE-schemes

from D-PKE schemes and CI-H hash functions. We then present an MLE scheme based

on a weaker assumption, namely any ROR symmetric encryption scheme, for particular

classes of sources, based on a method we call Sample-Extract-Encrypt. It also uses an

extractor.

4.4.1 Extract-Hash-Check

Overview

It is natural to aim to build MLE from a D-PKE scheme or a CI-H function

because the latter primitives already provide privacy on unpredictable messages. However,

in attempting to build MLE from these primitives, several problems arise. One is that

neither of the base primitives derives the decryption key from the message. Indeed, in

both, keys must be generated upfront and independently of the data. A related problem is

that it is not clear how an MLE scheme might decrypt. CI-H functions are not required

to be efficiently invertible. D-PKE does provide decryption, but it requires the secret key,

and it is not clear how this can yield message-based decryption.

Our solution will in fact not use the decryptability of the D-PKE scheme, but

rather view the latter as providing a CI-H function keyed by the public key. We apply an
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extractor (its seed S will be in the parameters of the MLE scheme) to the message m to

get the MLE key k. Given S,m, this operation is deterministic. The scheme encrypts the

message bit by bit, creating from m = m[1] . . .m[|m|] the ciphertext c = c[1] . . .c[|m|] in

which c[i] is a hash of k‖〈i〉‖m[i]. (The key for the hash function is also in the parameters.)

To decrypt c[i] given k, hash both k‖〈i〉‖1 and k‖〈i〉‖0 and see which equals c[i]. (This

is the “check” part.) The proof of privacy relies on the fact that each input to each

application of the hash function will have a negligible guessing probability even given

the parameters. The reduction will take an MLE source and build a source for the hash

function that itself computes k and produces the inputs to the hash function. We now

proceed to the details.

Ingredients

The first tool we need is a family of hash functions H = (KH,H). We define

privacy in the same manner as for MLE. Namely, game PRV-CDAH is the same as

PRV-CDAMLE of Fig. 4.3 except that it uses KH and H instead of P and E. Likewise for

PRV$-CDAH. If A is an adversary we let Adv
prv-cda
H,S,A (λ )= 2 ·Pr[PRV-CDAA

H,S(λ )]−1 and

Adv
prv$-cda
H,S,A (λ ) = 2 · Pr[PRV$-CDAA

H,S(λ )] − 1. We say that H is PRV-CDA

(resp. PRV$-CDA) secure if Adv
prv-cda
H,S,A (·) (resp. Adv

prv$-cda
H,S,A (·)) is negligible for all PT

S,A such that S is unpredictable. The PRV-CDA formulation follows [12, 16, 70] while

the PRV$-CDA formulation follows [70].

The second tool we need is a family of extractors. This is a family Ext =

{Extλ}λ∈N where Extλ : {0,1}s(λ )×{0,1}`(λ ) → {0,1}k(λ ) for each λ ∈ N. We re-

fer to s, `,k as the seed, input and output lengths respectively. We require that the

map 1λ ,S,X 7→ Extλ (S,X) be PT computable. For all λ ∈ N and all random variables

(X ,Z),S,k we require that SD((S,Extλ (S,X),Z);(S,k,Z))≤
√

2k(λ ) ·GP(X |Z) under

the following conditions: (X ,Z),S,k are independent, S is uniformly distributed over

{0,1}s(λ ), and k is uniformly distributed over {0,1}k(λ ). A construction with this guar-
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P(1λ )

S←${0,1}s(λ )

kh←$KH(1λ )

Return S‖kh

K(1λ ,S‖kh,m)

k← Extλ (S,m)

Return k

E(1λ ,S‖kh,k,m)

For i = 1 to |m| do
c[i]←H(1λ ,kh,k‖〈i〉‖m[i])

Return c

T(1λ ,S‖kh,c)

Return c

D(1λ ,S‖kh,k,c)

For i = 1 to |c| do
If c[i] = H(1λ ,kh,k‖〈i〉‖1) then

m[i]← 1
Else

If c[i] = H(1λ ,kh,k‖〈i〉‖0) then
m[i]← 0

Else Return⊥
Return m

Figure 4.5. MLE scheme HC[H,Ext] associated to hash family H= (KH,H) and extractor
family Ext = {Extλ}λ∈N.

antee may be obtained via the (average-case version of the) Leftover Hash Lemma

(LHL) [81, 53].

Extract-Hash-Check construction.

Let H = (KH,H) be a family of hash functions. Let Ext = {Extλ}λ∈N be a family

of extractors with seed length s, input length ` and output length k. Our construction

associates to them the MLE scheme HC[H,Ext] = (P,K,E,D,T) whose constituent

algorithms are defined in Fig. 4.5. The message space of this scheme is defined by

M(λ ) = {0,1}`(λ ) for all λ ∈ N. We let 〈i〉 denote the encoding of i ∈ N as a λ -bit

string. (We are assuming `(λ )≤ 2λ for all λ ∈N.) The ciphertext c is a `(λ )-vector over

{0,1}∗.

This MLE scheme is deterministic, hence provides perfect tag correctness. It

satisfies decryption correctness as long as H is injective. (A weaker, computational

decryption correctness condition is met if H is not injective but is collision-resistant.)

As a consequence of being deterministic and using ciphertexts for tags, it also has

unconditional consistency, namely perfect STC security. (We are, for simplicity, using

the ciphertext as the tag. For greater efficiency one could CR-hash it. STC would still
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hold, but now computationally.) The main task is to prove privacy, which is done by the

following, whose proof is in Appendix 4.8. Here, when MLE = HC[H,Ext], we denote by

SMLE the class of all PT, MLE-valid sources S such that 2k(·) ·gS(·) is negligible, where k

is the output length of Ext.

Theorem 4.4.1 Let Ext = {Extλ}λ∈N be a family of extractors. Let H = (KH,H) be

a family of hash functions. Let MLE = HC[H,Ext] be the MLE scheme associated to

them via our Extract-Hash-Check construction. Then (1) If H is PRV-CDA-secure then

MLE is PRV-CDA-secure over SMLE , and (2) If H is PRV$-CDA-secure then MLE is

PRV$-CDA-secure over SMLE .

We can directly instantiate H by a CI-H function as defined in [70]. Given a D-PKE

scheme DPKE = (DK,DE,DD), we obtain a hash family H = (KH,H) as follows. Let

KH(1λ ) run DK(1λ ) to get (ek,dk) and return ek as the hash key. Let H(1λ ,ek,m) =

DE(ek,m). (We note that we must assume a trusted setup which executes KH as shown

and discards dk, for if the server knows dk it can break the scheme. The parameters

must be generated by a third party or via a secure computation protocol so that the server

does not learn dk.) If DPKE meets the PRIV-security condition of [12, 16] appropriately

extended to handle auxiliary inputs as above, then H will be PRV-CDA-secure. Note

that this hash family is injective. Finally we note that the construction can be adapted

to turn an efficiently-searchable PKE scheme [12] into an MLE scheme, but since the

former may be randomized, the latter may be as well. These constructions account

for the schemes called XtCIH, XtDPKE and XtESPKE in the table of Fig. 4.1 and the

corresponding implication arrows in the picture.

D-MLE implies CI-H

Finally we justify the claim of Fig. 4.1 that deterministic MLE implies CI-H.

(Combined with the above, this makes the primitives equivalent.) Given a deterministic
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MLE scheme MLE = (P,K,E,D,T) we define the family of hash functions H = (P,H) as

follows. Algorithm H, given key P and message m, lets k← KP(m) and C← EP(k,m),

and returns C. (Both K and E are deterministic by assumption.) It is easy to see that if

MLE is PRV$-CDA-secure then so is H.

4.5 Relations Between MLE Privacy Notions

We first define the adaptive versions of PRV-CDA and PRV$-CDA, and then go

on to show the relations between PRV-CDA, PRV$-CDA and their adaptive versions, as

described in Fig. 4.2. We first generalize sources to take inputs.

A source with input is a PT algorithm S that on input 1λ and a string d returns

(m0, . . . ,mn−1,z) where m0, . . . ,mn−1 are vectors over {0,1}∗ and z∈ {0,1}∗. As before

n≥ 1 is called the arity of the source. We require that

• all the vectors have the same length µ(λ ), for some function m called the number of

messages;

• there is a function `, called the message length of the source, such that the string

m j[i] has length `(λ , i) for all i ∈ [µ(λ )] and all j ∈ {0, . . . ,n−1}; and

• m j[i1] 6= m j[i2] for all distinct i1, i2 ∈ [µ(λ )] and all j ∈ {0, . . . ,n−1}, meaning the

entries of each vector are distinct.

These requirements are as before for sources (without inputs). As before, we refer to z as

the auxiliary information.

The guessing probability gS of source with input S is defined as the func-

tion which on input λ ∈ N returns maxi, j,d GP(m j[i] |z) where the probability is over

(m0, . . . ,mn−1,z)←$ S(1λ ,d) and the maximum is over all i ∈ [µ(λ )], all j ∈ {0, . . . ,n−

1} and all d ∈ {0,1}∗. (The domain for the latter being infinite, the max here is inter-

preted as a sup and it is an implicit assumption that for a source-with-input to be valid,
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this sup must exist.) As compared to a source (without input) the important point here

is that we maximize over d as well, so only the coins underlying the execution of S

can contribute to the guessing probability. We refer to − log(gS(·)) as the min-entropy

of S. We say that S is unpredictable if gS(·) is negligible. We say that S is MLE-valid

if m j[i] ∈MMLE(λ ) for all λ ∈ N, all (m0, . . . ,mn−1,z) ∈ [S(1λ ,d)], all i ∈ [µ(λ )], all

j ∈ {0, . . . ,n−1} and all d ∈ {0,1}∗.

Adaptive privacy notions

Let MLE = (P,K,E,D,T) be an MLE scheme and S be MLE-valid. The adaptive

chosen distribution attack games PRV-CDA-AMLE,S and PRV$-CDA-AMLE,S for MLE

are detailed in Fig. 4.6. For the former S will have arity one and for the latter, arity two.

In these games, the adversary A can make multiple, adaptive queries to its Enc oracle,

specifying each time an input d for S. It can then ask for the parameter with a reveal query,

after which no further Enc queries are allowed. We define advantage as Adv
prv-cda-a
MLE,S,A(λ )=

2 ·Pr[PRV-CDA-AA
MLE,S(λ )]−1 and Adv

prv$-cda-a
MLE,S,A (λ ) = 2 ·Pr[PRV$-CDA-AA

MLE,S(λ )]−

1. We say that MLE is PRV-CDA-A (resp. PRV$-CDA-A) secure over a class S of PT,

MLE-valid sources if Advprv-cdaaMLE,S,A(·) (resp. Advprv$-cdaa
MLE,S,A (·)) is negligible for all PT A

and all S ∈ S. We say that MLE is PRV-CDA-A (resp. PRV$-CDA-A) secure if it is

PRV-CDA-A (resp. PRV$-CDA-A) secure over the class of all PT, unpredictable MLE-

valid sources.

Relations between the notions

We have introduced four notions: PRV-CDA, PRV$-CDA, PRV-CDA-A and

PRV$-CDA-A. Fig. 4.2 states the relations between the four notions. The two trivial

implications are that security in the adaptive sense implies security in the corresponding

non-adaptive sense: PRV-CDA-A⇒ PRV-CDA and PRV$-CDA-A⇒ PRV$-CDA. (The

double-arrow notation meaning security in the left sense implies security in the right.)
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Main PRV-CDA-AA
MLE(λ )

p←$ P(1λ ) ; b←${0,1} ; done← false

b′←$ AEnc(1λ ) ; Return (b = b′)

Reveal

done← true ; Return p

Enc(d)

If done then Return ⊥
(m1,m2,z)←$ S(1λ ,d)
For i = 1, . . . , |mb+1| do

c[i]←$Ep(Kp(mb+1[i]),mb+1[i])
Return c,z

Main PRV$-CDA-AA
MLE(λ )

p←$ P(1λ ) ; b←${0,1} ; done← false

b′←$ AEnc(1λ ) ; Return (b = b′)

Reveal

done← true ; Return p

Enc(d)

If done then Return ⊥
(m,z)←$ S(1λ ,d)
For i = 1, . . . , |m| do

c1[i]←$Ep(Kp(mb+1[i]),mb+1[i])
c0[i]←${0,1}|c1[i]|

Return cb,z

Figure 4.6. The PRV-CDA-A and PRV$-CDA-A games.

We now show through a series of propositions the other implications and separations.

Most are simple; we start with the most interesting and useful, that PRV$-CDA⇒

PRV$-CDA-A. In the following, let MLE = (P,K,E,D,T) be an MLE scheme.

Proposition 4.5.1 If MLE is PRV$-CDA secure, then it is PRV$-CDA-A secure.

Proof: We prove the above proposition by showing that for every adversary A and source

S, there exists another adversary B and source S′ such that for any λ ∈ N

Adv
prv$-cda-a
MLE,S,A (λ )≤ qe(λ ) ·Adv

prv$-cda
MLE,S′,B(λ ) ,

where function qe is a bound on the number of encryption queries made by A. Moreover,

S′ has the same guessing probability as S, and tS′ = O(tS), and tB = O(tA).

We use a hybrid argument. Consider game H with behavior intermediate between

PRV$-CDA-A with b = 0 and with b = 1. In H, a random g←$ [qe(λ )] and b←${0,1}

are chosen. Up to the g-th encryption query, the adversary gets random bits as replies.
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The g-th query gets real ciphertexts or random bits depending on b being 1 or 0. Further

queries get real ciphertexts as replies. It follows that

Pr[HA(λ )]≥ 1
qe(λ )

Advprv$-cdaa
MLE,S,A (λ ).

Consider adversary B which simulates A on game H as follows. Let S′ be the algorithm

that chooses random coins R and g ∈ qe(λ ) and simulates A up to the g-th encryption

query by using bits from R to supply for the randomness required by A. When A makes

a query to Enc, then B runs S with fresh random coins from R to get m,z and replies

to A with random bits (from R) for ciphertexts, along with z. When A makes its g-th

encryption query dg, then S′ evaluates S(d) on fresh random coins — not from R — and

outputs the resulting vector of plaintexts m and side information z,R,g.

Now, consider the PRV$-CDA game with S′ as the source. Importantly, the

side information output by S′, which includes the random bits R, does not reduce the

conditional entropy of the output m of S(dg) as the coins used to run S(dg) to get m

were picked at random, not using R. The PRV$-CDA game then invokes adversary

B(p,c,z,R,g), where c is either an encryption of m or a vector of random bits, depending

on the choice of the bit b in the CDR game. This bit b actually corresponds to the bit

in the H game as well. Adversary B then continues to run A with the same random

coins R. A continues to make Enc queries which are now handled by B which replies to

them since it knows the parameter p. When A makes a reveal query and B releases the

parameter. Finally A finishes execution and outputs a bit b which is echoed by B. We

have

Pr[HA(λ )] = Pr[PRV$-CDAB
MLE,S′(λ )].

Moreover, the sum of the running times of S′ and B are both proportional to the running

time of A, which includes the running time of S on the inputs provided by A. This proves
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the proposition.

Security in the PRV$-CDA sense also implies security in the PRV-CDA sense,

with sources of comparable entropy.

Proposition 4.5.2 If MLE is prv$-cda secure, then it is PRV-CDA secure.

Proof: We can prove this proposition by showing that for every adversary A, for every

source S, there exists another adversary B, and another source S′ with GPS(·) = GPS′(·)

such that

Advprv$-cda
MLE,S′,B(λ )≥

1
2

AdvPRV-CDA
MLE,S,A (λ ),

for all λ ∈ N and tB = O(tA), and tS′ = O(tS), from which the proposition follows

immediately. Towards that, consider source S′ which picks a random bit b, runs S to

get m0,m1,z, and returns mb,(z,b). Clearly, S′ has the same guessing probability as S

and the running time of S′ is proportional to S, depending on implementation constants.

Adversary B runs A with z to get b′, and returns 1 if b = b′ and 0 otherwise. The relation

between the advantages follows.

A similar argument can be used to show the adaptive equivalent, PRV$-CDA-A⇒

PRV-CDA-A. The following proposition shows that the converse is not true:

PRV-CDA 6⇒ PRV$-CDA.

Proposition 4.5.3 There exists an MLE scheme which is PRV-CDA secure but not

PRV$-CDA secure.

Proof: Assume there exists an PRV-CDA secure MLE = (P,K,E,D,T). Then, on top

of MLE, we build another scheme MLE′ = (P,K,E′,D′,T) such that (1) for every ad-

versary A and source S there exists another adversary B running in comparable time

with Adv
prv-cda
MLE,S,B(λ ) = Adv

prv-cda
MLE′,S,A(λ ), for all λ ∈ N; and (2) there exists an efficient
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adversary C such that Adv
prv$-cda
MLE′,S,C(λ )≥

1
2 for all λ ∈ N, for all sources S. Let MLE′ be

such that E′ runs E on its inputs and appends a 0-bit to the resulting ciphertext, and

D′ chops off the trailing bit of its ciphertext input and returns the result of D on

the result. Given adversary A, adversary B simply appends a 0-bit to its input ciphertexts

and runs A. Adversary C outputs 1 if the last bit of the first component of its input

ciphertext is 0 and it outputs 0 otherwise.

The adaptive analogue PRV-CDA-A 6⇒ PRV$-CDA-A follows from a similar

proposition and proof as above. The following proposition shows that PRV-CDA 6⇒

PRV-CDA-A as one-time security does not imply adaptive security in the PRV-CDA-A

sense. The proof follows from results for deterministic encryption [12] and hedged

encryption [13] which rule out public-key dependent security.

Proposition 4.5.4 There exists a scheme MLE′ which is PRV-CDA secure but not

PRV-CDA-A secure.

Proof: We prove the proposition by taking an PRV-CDA-secure MLE scheme MLE,

and modifying it so that it is still PRV-CDA secure, but no longer PRV-CDA-A secure.

Specifically, we show that for every adversary A and source S there exists another

adversary B running in comparable time with

AdvPRV-CDA
MLE,S,B (λ ) = AdvPRV-CDA

MLE′,S,A (λ ),

for all λ ∈ N and there exists an efficient adversary C and source S′ with GPS′(·) ≤

2GPS(·) such that Advprv-cdaa
MLE′,S′,C(λ ) ≥ 1/2, for all λ ∈ N. Consider the MLE scheme

MLE′ such that E′ runs E on its inputs and appends the parameter p to the ciphertext

returned by E. D′ chops off the trailing parameter p of its ciphertext input and returns the

result of D on the result. Given adversary A, adversary B, when invoked with parameter
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p, ciphertext vector c and side-information z, simply appends the parameter to each

element of c and calls 0-bit to its input ciphertexts and runs A, echoing its output. In

the PRV-CDA-A game, adversary C receives the parameter after the first query to Enc,

and it can provide this parameter to S′, which can now generate parameter-dependent

messages. Now, we can show that S′ can fix one or more bits of the tag, and thus

communicate a single bit to the adversary. We omit the details, noting that this scenario

of insecurity when the source has the parameter is similar to others arising in deterministic

encryption [12] and hedged encryption [13] which rule out public-key dependent security

in these settings.

4.5.1 Sample-Extract-Encrypt

Overview

We now give a construction of an MLE scheme that relies only on a standard

and weak assumption, namely a one-time symmetric encryption scheme as defined in

Section 4.3, which can be built from any one-way function. The tradeoff is that the

scheme only works for a limited class of sources.

Stepping back, if we are to consider special sources, the obvious starting point is

uniform and independent messages. Achieving MLE here is easy because we can use

part of the message as the key to encrypt the other part. The next obvious target is block

sources, where each message is assumed to have negligible guessing probability given

the previous ones. D-PKE for such sources was achieved in [32]. We might hope, via the

above HC construction, to thus automatically obtain MLE for the same sources, but HC

does not preserve the block source restriction because the inputs to the hash function for

different bits of the same message are highly correlated.

Our Sample-Extract-Encrypt (SXE) construction builds an MLE scheme for

certain classes of block sources where a random subset of the bits of each message
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Proj(m,T )

m1← ε; i1← 0
For i = 1 to |T | do

If T [i] = 1 then
i1← i1 +1; m1[i1]← m[i]

Return m1

Merge(m1,m2,T )

m← ε; i1← 0; i2← 0
For i = 1 to |T |

If T [i] = 1 then i1← i1+1; m[i]←m1[i1]
Else i2← i2 +1; m[i]← m2[i2]

Return m

P(1λ )

S←${0,1}s(λ )

U←p(λ ){0,1}n(λ )

Return S‖U

K(1λ ,S‖U ,m)

K← Proj(m,U); Return K

E(1λ ,S‖U ,K,m)

L← Extλ (S,padλ (K))

m2← Proj(m,U)

C←$SE(L,m2)

Return C

D(1λ ,S‖U ,K,C)

L← Extλ (S,padλ (K))

m2← SD(L,C)

m←Merge(K,m2,U)

Return m

Figure 4.7. Top: The Proj and Merge algorithms. Bottom: MLE scheme SXE[SE,Ext, p]
associated to symmetric encryption scheme SE, extractor family Ext and p: N→ [0,1].

remains unpredictable even given the rest of the bits and previous messages. For example,

if a message has some subset of uniform bits embedded within it. The scheme then uses a

random subset of the message bits as a key, applies an extractor, and then symmetrically

encrypts the rest of the message.

Preliminaries

First, some notation. If T ∈ {0,1}∗, we let hw(T ) denote the Hamming weight of

T and T the bitwise complement of T . For T ∈ {0,1}|m|, function Proj(m,T ) of Fig. 4.7

returns the hw(T )-length string formed by selecting from m the coordinates i in which

T [i] = 1. If q ∈ [0,1] we let U←q{0,1}n mean that we let U [i] = 1 with probability

q and 0 with probability 1− q, independently for each i ∈ [n]. Note that the expected

Hamming weight of U is then qn. Looking ahead, we will be interested in sources for

which one can “gather” sufficient min-entropy by randomly taking a subset of message

bits. The fraction q controls the bias with which we select any particular bit.

In this section, all sources have arity 1. Let S be a source with number of messages

m and message length ` such that `(λ , i) = n(λ ) for all λ , i ∈ N, meaning all messages
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m[1], . . . ,m[m(λ )] ∈ [S(1λ )] have the same length n(λ ). For p: N→ [0,1] and λ ∈ N

we let

gS,p(λ ) = max
i

GP(Proj(m[i],U) |(m[1], . . . ,m[i−1],Proj(m[i],U),Z))

where the probability is over U←p(λ ){0,1}n(λ ) and (m,Z)← S(1λ ) and the maximum

is over all i ∈ [m(λ )]. In other words, picking U at random from our p(λ )-biased

distribution, we are measuring the probability of guessing the projection of the i-th

message onto U , given the other bits of the message as well as the previous messages.

We say that S is p-unpredictable if gS,p(·) is negligible. Note that a blocksource is a

source that is 1-unpredictable. Considering smaller values of p thus relaxes the usual

blocksource requirement.

Some natural sources are, or can be shown to be, p-unpredictable for small p.

One obvious example is uniform messages. Short of that is any source that is sufficiently

dense, meaning that a large enough fraction of the message bits have high min-entropy

conditioned on all other bits. A concrete example would be sources that embed uniform

bits in arbitrary locations within a message. For such a source, one can use a Chernoff

bound to show that it is a p-unpredictable source for a reasonable value of p related to

the density of the message.

The Sample-Extract-Encrypt construction

Let SE = (SK,SE,SD) be a (deterministic) one-time symmetric encryption

scheme with key length κ(λ )(·). Let Ext = {Extλ}λ∈N be a family of extractors with

seed length s, output length k and input length `. (We’ve assumed that the output length

of Ext is equal to the key length of SE.) We let n(·) = `(·)−1. Let p: N→ [0,1]. Our

construction associates to them the MLE scheme SXE[SE,Ext, p] = (P,K,E,D,T) whose

constituent algorithms are defined in Fig. 4.7. The omitted tag algorithm T(1λ ,S‖U ,C)
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simply returns C. Here we let padλ (K) = K‖1‖0n(λ )−|K| so that outputs of padλ are valid

inputs for Extλ (S, ·). The message space of this scheme is defined by M(λ ) = {0,1}n(λ )

for all λ ∈ N.

This MLE scheme is deterministic, hence provides perfect tag correctness. It

satisfies decryption correctness due to the corrections of SE. Note that the scheme is

not strictly non-trivial, since it could be that hw(U) = n(λ ). However, it is non-trivial

in expectation whenever p(λ ) < 1, since E[hw(U)] = p(λ ) · n(λ ). As a consequence

of being deterministic, and using ciphertext as the tag, it also has perfect STC security.

(We are, for simplicity, using the ciphertext as the tag. For greater efficiency one could

CR-hash it. STC would still hold, but now computationally.) The following theorem

establishes privacy. Here, when MLE = SXE[SE,Ext, p], we denote by SMLE the class of

all PT, MLE-valid sources S such that 2k(·) ·gS,p(·) is negligible, where k is the output

length of Ext. The proof is in Appendix 4.9.

Theorem 4.5.5 Let SE = (SK,SE,SD) be a one-time symmetric encryption scheme

providing ROR security. Let Ext= {Extλ}λ∈N be a family of extractors Let p: N→ [0,1].

Let MLE = SXE[SE,Ext, p] be the MLE scheme associated to them via our Sample-

Extract-Encrypt construction. Then MLE is PRV$-CDA-secure over SMLE,p.

The key in this scheme has expected length p(·) ·n(·). If we increase p, we get security

for a larger class of sources at the cost of a larger key length, so the construction can be

seen as trading key size for security.

4.6 Proof of prv$-cda for CE, HCE1, HCE, RCE

We state a concrete security version of Theorem 4.3.1; the latter is a corollary of

the concrete version.
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Theorem 4.6.1 Let SE be a symmetric encryption scheme with key length κ(·) and let H

be a random oracle. Let XXX ∈ {CE,HCE1,HCE,RCE} be constructed using SE and H.

For any source S with min-entropy µ(·) and number of messages m(·) and any adversary

A making q(·) queries to H, there exists adversaries B1,B2 such that for all λ ∈ N

Adv
prv$-cda
XXX,S,A(λ ) ≤ qm ·Advkr

SE,B1
(λ )+2·Advror

SE,B2
(λ )+

4m2

2κ
+

qm
2µ

where q = q(λ ), µ = µ(λ ), m = m(λ ), and κ = κ(λ ). The running time of adversary B1

and B2 are each at most tA + tS + cq(λ ), where c is a small implementation-dependent

constant. B2 makes at most m queries to its oracle. �

Proof: We prove the theorem for the case of RCE; the case of HCE proceeds similarly.

The prv$-cda security of HCE implies immediately both the security of HCE1 and the

security of CE, the latter by way of a straightforward reduction. In this setting, where S

does not have access to H, the parameter is unnecessary, and so we omit it in the rest of

the proof.

Let PRV$-CDA1RCE,S be the PRV-CDARCE,S game with b = 1 and let

PRV$-CDA0RCE,S be the PRV$-CDARCE,S game with b = 0. A standard argument

yields

Adv
prv$-cda
RCE,S,A(λ ) = Pr

[
PRV$-CDA1A

RCE,S(λ )
]
−Pr

[
PRV$-CDA0A

RCE,S(λ )
]
.

We write m(λ ), κ(λ ), q(λ ), and µ(λ ) in short as m, κ , q, and µ for the rest of the proof.

The first game G1 (Fig. 4.8) is identical to PRV$-CDA1RCE,S. Note that while the loop

in main does not check if H[m[i]] was already defined by a previous iteration, but this

does not change the implementation of a random oracle H because all sources ensure that

m[i] 6= m[ j] for i 6= j. The game sets a flag bad, however, should a value k[i] collide with
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a value k[ j] or m[ j] for j < i. Game G2 removes the boxed statement after bad. The two

games are identical-until-bad, and so from the fundamental lemma of game-playing [25],

Pr
[

GA
1

]
≤ Pr

[
GA

2

]
+Pr

[
GA

2 sets bad
]
.

Because k[i] are chosen uniformly and independently of m, we can bound the probability

of bad being set via a union bound, giving that Pr[GA
2 sets bad ]≤ 4m2/2κ .

Game G3 defers updating of the table H with regards to the points k[i] and T[i]

until they are needed due to a query to H. This change is invisible to the adversary,

and we have Pr[GA
2 ] = Pr[GA

3 ]. Game G3 sets a flag bad or bad′ should such an H query

occur. Game G4 removes the boxed statements of G3, which occur after bad or bad′ is

set. Games G3 and G4 are identical-until-bad or bad′ and so

Pr
[

GA
3

]
≤ Pr

[
GA

4

]
+Pr [G4 sets bad ]+Pr

[
G4 sets bad ′

]
.

In game G5, we change the way in which k[i] is selected. Now, c2[i] is sampled uniformly,

and k[i] is set to be c2[i]⊕ l[i]. This, in particular, makes the ciphertexts in c independent

of the symmetric keys in l. We have that Pr[GA
4 ] = Pr[GA

5 ] as well as Pr[GA
4 sets bad ] =

Pr[GA
5 sets bad ] and Pr[GA

4 sets bad ′] = Pr[GA
5 sets bad ′].

In game G6 we defer the computation of k[i] values and the setting of bad

or bad′ until after A finishes execution. We have that Pr[GA
5 ] = Pr[GA

6 ] as well as

Pr[GA
5 sets bad ] = Pr[GA

6 sets bad ] and Pr[GA
5 sets bad ′] = Pr[GA

6 sets bad ′].

We now bound in game G6 the probability that bad′ is set, which corresponds

to the adversary A querying one of the k[i] values. The adversary doing so reveals

the symmetric key l[i] associated to that query, by way of c2[i]⊕k[i]. Let B1 be KRSE

adversary that works as shown in Fig. 4.8. It guesses a hash query j∗ and an encryption
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main G1 , G2

(m,z)←$ S(1λ )

For i = 1, . . . ,m
l[i]←${0,1}k

c1[i]← SE(l[i],m[i])
k[i]←${0,1}k

H[m[i]]← k[i]
c2[i]← l[i]⊕k[i]
T[i]←${0,1}k

If H[k[i]] 6=⊥ then
bad← true

T[i]← H[k[i]]
H[k[i]]← T[i]
c[i]← c1[i]‖c2[i]‖T[i]

b′←$ AH(c,z) ; Return b′

proc. H(X) // G1,G2

If H[X ] 6=⊥ then Return H[X ]

Y←${0,1}k

H[X ]← Y
Return Y

main G3 , G4

(m,z)←$ S(1λ )

For i = 1, . . . ,m
l[i]←${0,1}k

c1[i]← SE(l[i],m[i])
k[i]←${0,1}k

c2[i]← l[i]⊕k[i]
T[i]←${0,1}k

c[i]← c1[i]‖c2[i]‖T[i]
b′←$ AH(c,z) ; Return b′

proc. H(X)

For i = 1, . . . ,m
If X = m[i] then
bad← true

Return k[i]
If X = k[i] then
bad′← true

Return T[i]
If H[X ] 6=⊥ then Return H[X ]

Y←${0,1}k; H[X ]← Y
Return Y

main G5

(m,z)←$ S(1λ )

For i = 1, . . . ,m
l[i]←${0,1}k

c1[i]← SE(l[i],m[i])
c2[i]←${0,1}k

k[i]← c2[i]⊕ l[i]
T[i]←${0,1}k

c[i]← c1[i]‖c2[i]‖T[i]
b′←$ AH(c,z) ; Return b′

proc. H(X)

For i = 1, . . . ,m
If X = m[i] then
bad← true

If X = k[i] then
bad′← true

If H[X ] 6=⊥ then
Return H[X ]

Y←${0,1}k; H[X ]← Y
Return Y

main G6

(m,z)←$ S(1λ )

For i = 1, . . . ,m
l[i]←${0,1}k; c2[i]←${0,1}k

c1[i]← SE(l[i],m[i]); T[i]←${0,1}k

c[i]← c1[i]‖c2[i]‖T[i]
b′←$ AH(c,z)
For i = 1, . . . ,m

k[i]← c2[i]⊕ l[i]
If m[i] ∈X then bad← true

If k[i] ∈X then bad′← true

Ret b′

proc. H(X)

X ←X ∪{X}
If H[X ] 6=⊥ then Return H[X ]

Y←${0,1}k ; H[X ]← Y ; Return Y

Adversary BEnc
1 :

(m,z)←$ S(1λ ); i∗←$ [1 ..m] ; j∗←$ [1 ..q]
For i = 1, . . . ,m

If i = i∗ then c1[i]←Enc(m[i])
Else

k[i]←${0,1}k; c1[i]← SE(k[i],m[i])
c2[i]←${0,1}k; T[i]←${0,1}k

c[i]← c1[i]‖c2[i]‖T[i]
b′←$ AH(c,z)
If |X[ j∗]|= κ then ret c2[i∗]⊕X[ j∗]
Ret ⊥

proc. H(X)

j← j+1 ; X[ j]← X
If H[X ] 6=⊥ then Return H[X ]

Y←${0,1}k ; H[X ]← Y ; Return Y

Figure 4.8. Games used in the proof of Theorem 4.3.1.
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main G7 , G8

(m,z)←$ S(1λ )

For i = 1, . . . ,m
l[i]←${0,1}k

c1[i]← SE(l[i],m[i])
c1[i]←${0,1}clSE(λ ,ω(λ ,i))

c2[i]←${0,1}k

T[i]←${0,1}k

c[i]← c1[i]‖c2[i]‖T[i]
b′←$ AH(P,c,z)
For i = 1, . . . ,m

If m[i] ∈X then bad← true

Ret b′

proc. H(X)

X ←X ∪{X}
If H[X ] 6=⊥ then Return H[X ]

Y←${0,1}k ; H[X ]← Y ; Return Y

Adversary BEnc(1λ ):

(m,z)←$ S(1λ )

For i = 1, . . . ,m
c1[i]←Enc(m[i])
c2[i]←${0,1}k

T[i]←${0,1}k

c[i]← c1[i]‖c2[i]‖T[i]
b′←$ AH(c,z)
bad← 0
For i = 1, . . . ,m

If m[i] ∈X then bad← 1
c←${0,1}
If c = 0 then Ret b′

If c = 1 then Ret bad

proc. H(X)

X ←X ∪{X}
If H[X ] 6=⊥ then Return H[X ]

Y←${0,1}k ; H[X ]← Y ; Return Y

Figure 4.9. Games used in the proof of Theorem 4.3.1.

index i∗. After A finishes executing, it outputs L = c2[i∗]⊕X[ j∗] should |X j∗ | = κ . A

hybrid argument gives that

Pr
[

GA
6 sets bad ′

]
≤ qm ·Advkr

SE,B1
(λ ) .

Game G7 (Fig. 4.9) is the same as G6 except that the setting of bad′ is dropped, and so

Pr[GA
6 ] = Pr[GA

7 ] as well as Pr[GA
6 sets bad ] = Pr[GA

7 sets bad ] Game G8 adds adds the

boxed statement, replacing the symmetric encryption ciphertext with random bits.

We now upper bound the transition from G7 to G8 by reducing to an RORSE

adversary B2. The adversary is shown in Fig. 4.9. It executes exactly GA
7 except that it

uses its own Enc oracle to generate c1[i] ciphertexts and it computes its output differently,
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randomly choosing whether to return b′ or bad. (Here bad is set to 0 or 1 as opposed to

true or false so B2 can output the value of the flag as its return value.) We have that

Advror
SE,B2

(λ ) = Pr
[

RORB2
SE

]
=

1
2

(
Pr[RORB2

SE |c = 1 ]+Pr[RORB2
SE |c = 2 ]

)
. (4.1)

We investigate each conditional probability in the sum in turn.

Let ROR1SE (resp. ROR0SE) be the RORSE game but with the challenge bit b set

to 1 (resp. 0). Then

Pr[RORB2
SE |c = 0 ] = Pr[ROR1B2

SE⇒ 1 |c = 0 ]−Pr[ROR0B2
SE⇒ 1 |c = 0 ]

= Pr
[

GA
7

]
−Pr

[
GA

8

]

Likewise we have that

Pr[RORB2
SE |c = 1 ] = Pr[ROR1B2

SE⇒ 1 |c = 1 ]−Pr[ROR0B2
SE⇒ 1 |c = 1 ]

= Pr
[

GA
7 sets bad

]
−Pr

[
GA

8 sets bad
]

By rearranging and substituting into Equation (4.1) we get that

Pr
[

GA
7

]
+Pr

[
GA

7 sets bad
]
= Pr

[
GA

8

]
+Pr

[
GA

8 sets bad
]
+2 ·Advror

SE,B2
(λ ) .

In game G8, the choice of m is independent of the generation of c. We can therefore

apply the min-entropy of S in order to bound the probability that any hash query by A

equals P‖m[i] for some i. Specifically, a union bound gives that

Pr
[

GA
8 sets bad

]
≤ qm

2µ
.
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Moreover, G8 implements for A exactly the oracles of PRV$-CDA0RCE.

4.7 Instantiations of CE, HCE, and RCE

We define variants of CE,HCE1,HCE,RCE that rely solely on a block cipher,

such as AES. This has significant efficiency benefits given the widespread hardware

support for AES. A block cipher is a map E: {0,1}n×{0,1}n → {0,1}n for which

E(k, ·) = Ek(·) is a permutation with inverse D(k, ·) = Dk(·). Both E and D must be

efficiently computable. We have for simplicity assumed that the key size and block size

are equal. This is true of AES128, and one can extend the constructions below to other

cases.

In Fig. 4.10 we define the hash function MD[E] with output length n bits and

the one-time symmetric encryption algorithm CTR[E]. The Merkle-Damgard transform

MD[E] : {0,1}∗→{0,1}n over (k,n)-block cipher E in Davies-Meyer mode for messages

of length < 2k, and CTR[E], the counter mode of operation of E. If ` ∈ N, then 〈`〉n

denotes an n-bit encoding of `. The former is the Merkle-Damgärd with strengthening

transform applied to the Davies-Meyer compression function using E. The latter is

standard CTR mode with a fixed IV. We define the MLE scheme RCE[E] = (P,K,E,T,D)

via the algorithms below. A diagram is shown in Fig. 4.11. The scheme CE[E] is derived

from RCE[E] by: (1) setting L = 0n, using c2 as the symmetric key for CTR[E], and

not including c2 in the ciphertext; and (2) having tag generation hash the ciphertext by

E(MD[E](m), p). Scheme HCE[E] is the same except that encryption uses as key for

CTR[E] the value c2 and c2 is not included in the ciphertext. The prv$-cda security of

these variants can be shown in the ideal cipher model [84] using a proof that uses the

preimage-awareness [54] of MD[E] together with an adaptation of the proof techniques

used in the analysis of deterministic encryption schemes given in [99]. We omit it for the

sake of brevity. The STC and TC security of the schemes are analogous to the results in
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MD[E](m)

y[0]← 0n ; b← split(pad(m,k),k)
`← |b|
For i = 1, . . . , ` do

y[i]← E(b[i],y[i−1])⊕y[i−1]
Return y[`]

split(m,k)
For i = 1, . . . ,b|m|/kc do b[i] ←
m[ik,(i+1)k]
b[b|m|/kc+1]←m[b|m|/kck, |m|] ; Re-
turn b

CTR[E](k,m)

b← split(m,n) ; `← |b|
For i = 1, . . . , `−1 do

c[i]← E(k,〈i〉n)⊕b[i]
X ← E(k,〈`〉n)
c[`]← b[`]⊕X [0, |b[`]|]
Return c

pad(m,k)
`← k(b|m|/kc+1)− k ;
Return m‖1‖0` ‖〈|m|〉k

Figure 4.10. The Merkle-Damgard transform over a block cipher in Davies-Meyer mode.

E

E

M[1]

L

...E

E

C [1]
1

C [2]
1

...

E

E

C [l]
1

K

E

C 
2

P E

T 

P

E

10*<nl>M[2] M[l]

0
n

0   1
n-1

<1> <2> <l>

P(1λ )

p←${0,1}n ; Return p

Kp(m)

k←MD[E](m) ; Return k

Ep(k,m)

L←${0,1}n

c1← CTR[E](L,m)

c2← L⊕E(k, p)
T ← E(k, p⊕0n−11)
Return (c1,c2,T )

Dp(k,(c1,c2,T ))
L← c2⊕E(k, p)
m← CTR[E](L,c1)

k ′←MD[E](m)

If E(k ′, p⊕0n−11)= T then
Return m

Else Return ⊥

Figure 4.11. Key generation and encryption, together in a single pass, for a message of
length `n using RCE[E] for a block cipher E.

Section 4.3.

Speed comparisons.

We implemented the schemes

• XXX[CTR[AES128],H] for XXX ∈ {CE,HCE,RCE} and H ∈ {SHA256,SHA512}
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• XXX[E] for XXX ∈ {CE,HCE,RCE} and E ∈ {AES128,AES256}

using OpenSSL version 1.0.0, with AES-NI [72] turned on for both AES128 and

AES256. We measured the encryption performance when processing 4KB inputs. (Larger

sizes have performance that degrades as expected due to inputs not fitting into the CPU

cache.) The tests were performed with a warm cache (prior to the timings, the inputs

were accessed several times) on an x86-64 Intel Core i7-970 processor clocking at 3.2

GHz; the test machine had 12GB of memory. The compiler, kernel and operating system

on the machine were gcc-4.6, Linux kernel 3.0.0-13 and Ubuntu 11.04 respectively. The

programs were compiled with the -O3 -march=native flags to produce optimized code

and -msse4 flag to enable support for Streaming SIMD instructions. Processor frequency

scaling was turned off while running the experiments. The system was otherwise idle dur-

ing the tests, and we used the rdtsc instruction of the x86 instruction set to measure time.

Fig. 4.1 lists the measured performance, in cycles per byte, of the various MLE schemes.

In terms of absolute performance, the fastest among the schemes, RCE[AES256] can

encrypt a 4KB input and generate the tag in just over 8 microseconds. On the other

hand, the CE instantiation with AES256 spends about 15 microseconds to generate the

ciphertext and tag.

4.8 Proof of Theorem 4.4.1

As per the theorem statement, let H = (KH,H) be a family of hash functions and

let Ext = {Extλ}λ∈N be a family of extractors. Let `(·) be the input length and κ(·) the

output length of Ext. Below we let HC = HC[H,Ext]. We concentrate on the second

part of the theorem, for prv$-cda. The second part of the proof (showing that PRV-CDA

security follows from PRV-CDA of the underlying hash family) proceeds in a similar

fashion.. Sources below are always therefore of arity one.

The following lemma relates the PRV$-CDA advantage of an adversary A against
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Table 4.1. Performance of CE instantiations in cycles per byte.

CE variant Operation
Choice of H

SHA256 SHA512 AES128 AES256
CE

K
21.1 12.1 7.5 5.3

HCE 21.1 12.1 7.5 5.3
RCE 21.1 12.1 7.5 5.3
CE

E
1.2 1.2 1.2 1.2

HCE 1.4 1.3 1.3 1.3
RCE 1.4 1.3 1.3 1.3
CE

T
21.1 12.1 7.5 5.3

HCE – – – –
RCE – – – –
CE

K + E + T
43.4 25.4 16.3 11.8

HCE 22.5 13.6 8.9 6.6
RCE 22.3 13.3 8.7 6.5
CE

D
1.2 1.2 1.2 1.2

HCE 22.5 13.6 8.9 6.6
RCE 22.3 13.3 8.7 6.5

HC[Extλ ,H] to the PRV$-CDA advantage of a H adversary B.

Lemma 4.8.1 Let S be an HC-valid source with message number m(·) and message

lengths `(·). Let A be an adversary. Then there exists a H-valid source S′ and adversary

B such that for all λ ∈ N

Adv
prv$-cda
HC,S,A (λ )≤ Adv

prv$-cda
H,S′,B (λ ) .

Moreover, S′ is such that gS′(λ ) ≤ 2−k(λ ) +
√

2k(λ ) ·gS(λ ); its message number is

m′(λ ) = m(λ ) · `(λ ); and the length of each message it outputs is κ(λ )(λ ) + 1 +

dlog2(`(λ ))e. The running time of adversary B is tB = O(tA +m(·)`(·)tH(·)), and the

running time of S′ is tS′ = O(tS +m(·)tExtλ (·)) where tH and tExtλ are bounds on running

times of of H and Extλ . �
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Main G1(λ )

S←${0,1}s(λ ); kh←$KH(1λ )

b←${0,1} ; (m,z)←$ S(1λ )

For i = 1, . . . , |m| do
m←m[i]; k← Extλ (S,m)

`← |m|; m1 ‖ . . . ‖m`← m
For j = 1 to ` do

c1
j ← H(kh,k ‖ j‖m j); c0

j←${0,1}|c
1
j |

c[i]← (cb
1, . . . ,c

b
`)

b′←$ A(S,kh,c,z)
Return(b = b′)

S′(1λ )

S←${0,1}s(λ ); (m,z)←$ S(1λ )

i′← 0
For i = 1, . . . , |m| do

m←m[i]; k← Extλ (S,m)

`← |m|; m1 ‖ . . . ‖m`← m
For j = 1 to ` do

m′[i′]← k ‖ j‖m j

i′← i′+1
Returnm′,(z,S)

Figure 4.12. Game G1 and source S′ for Theorem 4.4.1.

Proof: Consider game G1, source S′ and adversary B of Fig. 4.12. Game G1 is the

PRV$-CDAHC game and so it follows that

Adv
prv$-cda
HC,S,A (λ ) = 2 ·Pr

[
GA

1 (λ )
]
−1.

Adversary B, on inputs kh,c,(z′,S), plays the PRV$-CDAH,S′ game by running

A(S,kh,c,z′) and outputing the output of A. The source S′ first picks a random ex-

tractor key S, then runs S to get m and then runs each component of m through Extλ with

S to get the MLE keys k. In the next step, it splits each m component into individual bits

and prepends them with the appropriate MLE key and index to get m(λ )`(λ ) messages of

the form k[i]‖〈 j〉‖m[i][ j] for j ∈ [`(λ )] for i ∈ [m(λ )]. Then, S′ outputs these messages

along with auxiliary information z of S and S. As B plays the PRV-CDA game, depending

on the bit b in the game, either the hashes corresponding to m, or random strings are

provided to B, and this corresponds to getting HC ciphertexts for m, or random bits.

Thus, B simulates G1 for A with the bit of its PRV$-CDA game playing the role of the

bit in G1. Finally, when A finishes and outputs a bit, B also exits, echoing that bit. We
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have Pr[GA
1 (λ )] = Pr[PRV$-CDAB

H,S′(λ )] and hence

Adv
prv$-cda
H,S′,B (λ ) = 2 ·Pr

[
GA

1

]
−1 = Adv

prv$-cda
HC,S,A (λ ).

Now, we relate S′ and S, by observing that S is picked at random, it follows from the

properties of Extλ that for a randomly picked k←${0,1}k(λ )

GP(Extλ (S,m[i]) || j ||m[i][ j]|S,z)≤GP(k|S,z)+SD((S,Extλ (S,m[i]),z);(S,k,z))

≤ 1
2k(λ )

+

√
2k(λ )GP(m[i]|z)≤ 1

2k(λ )
+

√
2k(λ )GPS(λ )

for all i ∈ [`(λ )], for all i ∈ [m(λ )]. This completes the proof of the lemma.

To finish the proof of the theorem in the prv$-cda case, we note that gS′(·) is negligible

when 2k(·) ·gS(·) is negligible. In turn, Adv
prv$-cda
H,S′,B (·) is negligible for all PT B and hence

Adv
prv$-cda
HC,S,A (·) is negligible for all PT A.

4.9 Proof of Theorem 4.5.5

Proof: Game G1 of Fig. 4.13 is a hybrid between the PRV$-CDA with b = 0 and b = 1,

with the code of SXE and S. We have

Pr[GA
1 (λ )]≥

1
m(λ )

Advprv$-cda
SXE[Ext,SE,p],S,A(λ ).

Game G2 is like G1, but makes a modification in how the ciphertext corresponding to the

switching value g is treated. Specifically, it picks a random g←$ [m(λ )], creates the first

g−1 ciphertexts and later m(λ )−g ciphertexts as in G1, but the g-th ciphertext is set to

an encryption of the g-th plaintext under a random key, if b = 0, as opposed to a random

string as in G1.

The difference between G1 and G2 can be bounded by a simple single key ROR
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Main G1(λ )

S←${0,1}κ ; U←p(λ ){0,1}n(λ )

g←$ m(λ ) ; b←${0,1} ; m,z←$ S(1λ )

For i = 1, . . . , |m| do
m1← Proj(m[i],U)

m2← Proj(m[i], [n(λ )]\U)

k← Extλ (S,m1)

If i < g+b then c[i]← SE(1λ ,k,m2)

If i = g and b = 1 then
c[i]← SE(1λ ,k,m2)

If i = g and b = 0 then
c[i]←${0,1}|SE(1λ ,k,m2)|

If i > g then
c′← SE(1λ ,k,m2); c[i]←${0,1}c′

b′←$ A(S||U,c,z); Return(b = b′)

Main G2

S←${0,1}κ ; U←p(λ ){0,1}n(λ )

g←$ m(λ ) ; b←${0,1} ; m,z←$ S(1λ )

For i = 1, . . . , |m| do
m1← Proj(m[i],U)

m2← Proj(m[i], [n(λ )]\U)

k← Extλ (S,m1)

If i < g+b then c[i]← SE(1λ ,k,m2)

If i = g and b = 1 then c[i]← SE(1λ ,k,m2)

If i = g and b = 0 then
k ′←${0,1}ks ; c[i]← SE(1λ ,k ′,m2)

If i > g then c[i]←${0,1}|SE(1λ ,k,m2)|

b′←$ A(S||U,c,z); Return(b = b′)

Figure 4.13. Games for Theorem 4.5.5.

adversary B which runs the hybrid, and handles its switching ciphertext as follows. It

flips a random bit b, and if b = 1, it runs the extractor on the g-th input to get the key and

encrypts the g-th message under this key. If b = 0, then it forwards the g-th message to

its Enc oracle. Depending on whether the bit in the ROR game is 0 or 1, adversary A is

simulated either in G1 or G2. Moreover, B never makes more than one query to its Enc

oracle. We have, (|Pr[GA
1 (λ )]−Pr[GA

2 (λ )]|)/2 = Adv1-rorSE,B(λ ) for all λ ∈ N.

In game G2, the difference between the settings of b = 0 and b = 1 is in how the

key for g-th plaintext is derived. If b = 0, the extractor output is used, and if b = 1 then a

random key is chosen. Importantly, this is the last plaintext for which the game replies
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with a real encryption; subsequent components of c are simply random strings. We have

Pr[GA
2 (λ )]≤ SD((SE(1λ ,k,Proj(mg, [n(λ )]\U)),m1, . . . ,mg−1,z,S),

(SE(1λ ,Extλ (S,Proj(mg,U)),

Proj(mg, [n(λ )]\U)),m1, . . . ,mg−1,z,S))

≤ SD(k,Proj(mg, [n(λ )]\U),m1, . . . ,mg−1,z,S),

(Extλ (S,Proj(mg,U))),Proj(mg, [n(λ )]\U),m1, . . . ,mg−1,z,S)).

In the above probabilities, U←p(λ ){0,1}n(λ ). The source S is such that

gS,p(λ ) = max
i

GP(Proj(m[i],U) |(m[1], . . . ,m[i−1],Proj(m[i], [n(λ )]\U),z))

which in turn is equal to 2−k(λ )ν(λ ) where ν is some negligible function. Applying that

Ext is an extractor, the above statistical distance is bounded by
√

2k(λ )gS,p(λ ) =
√

ν(λ ).

Putting these together, we have

Advprv$-cda
SXE[Ext,SE,p],S,A(λ )≤ m(λ )(

√
ν(λ )+Adv1-rorSE,B(λ )).

Since both the quantities on the right are negligible and A and S are PT algorithms, the

prv$-cda advantage of A is negligible and SXE[Ext,SE, p] is prv$-cda secure for these

types of sources.
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Chapter 5

Universal Computational Extractors

We now look at a new notion of security for (keyed) hash functions called UCE

(Universal Computational Extractor). UCE-security is the first well-defined, standard-

model security attribute of a hash function shown to permit the latter to securely instantiate

ROs across a fairly broad spectrum of schemes and goals.

The random-oracle paradigm of BR93 [22] has two steps: (1) Design your scheme,

and prove it secure, in the ROM, where the scheme algorithms and adversary have access

to a RO denoted RO (2) Instantiate the RO to get the standard model scheme that is

actually implemented and used. We will consider instantiation via a family of functions

H, which means that the instantiated scheme is obtained by replacing RO calls of the

ROM-scheme algorithms by evaluations of the deterministic function H(k, ·) specified by

a key k←$ K(1λ ), where λ is the security parameter. The key k is put in the public key of

the instantiated scheme if the latter is public key, else enters in some scheme-dependent

way. The suggestion of BR93 was that if H “behaved like a RO,” the instantiated scheme

would be secure in the standard model. They suggested to obtain such instantiations,

heuristically, via cryptographic hash functions. The fundamental subsequent concern has

been the lack of a proof of security for the instantiated scheme.

The lack of a proof of security for the instantiated scheme is a consequence of an

even more fundamental lack, namely that of a definition, of what it means for a family of

139
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functions to “behave like a RO,” that could function as an assumption on which to base

the proof. The PRF definition [66], which has worked so well in the symmetric setting, is

inadequate here because PRF-security relies on the adversary not knowing the key. And

collision-resistance (CR) is far from sufficient in any non-trivial usage of a RO.

Canetti [44] was the first to articulate the need for defintions for function families

to model properties of random oracles, and seek a standard-model primitive sufficient

to capture some usages of a RO. Notions such as Perfectly One-Way Probabilistic Hash

Functions (POWHFs) [44, 48, 45] and non-malleable hash functions [31] have however

proven of limited applicability [33]. Another direction has been to try to instantiate the

RO in particular schemes like OAEP [23], again with limited success [34, 33] or under

strong assumptions on RSA [85]. These works [44, 48] aimed for security notions that

they could achieve under standard assumptions. Expectedly, applicability was limited.

UCEs start from the perspective of maximizing applicability while being seen as an

assumption rather than something to achieve under other assumptions.

UCE

At a high level, our definition considers a source S which is an algorithm executed

with access to an oracle Hash, the latter being H(k, ·) for key k←$ K(1λ ) if the challenge

bit b is 1, and a RO otherwise. If security now asks that S not figure out b, then, if we deny

it hk, we would be back to PRFs, and if we give it hk, security would be unachievable.

So we don’t ask S to figure out b. Instead, it must pass to an accomplice adversary D,

called the distinguisher, some information L called the leakage. The distinguisher is given

the key hk and must figure out b. For a class S of sources, let us say that H ∈ UCE[S], or

is UCE[S]-secure, if, for all S ∈ S and all PT D, the advantage of S,D in figuring out b, in

the game sketched above, is negligible.

Clearly, UCE[S]-security is not achievable if S is the class of all PT sources. For

example, the source could include in L a point x and the result y =Hash(x) of its oracle
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on x, and D, having hk, can test whether or not y = H(k,x). We seek, accordingly,

classes S small enough that the assumption of UCE[S]-security (that is, that this set is non-

empty) is plausible, yet large enough that the same assumption is useful for applications.

The classes are obtained by restricting the source. Here, we consider a restriction we

term unpredictability. Unpredictability of S requires that it be infeasible for a predictor

adversary P, given the leakage produced by the source in the random (b = 0) game, to

find any of the inputs queried by S to its oracle. Note that unpredictability is a property

of the source, not of the family of functions H, the latter not figuring in the definition at

all. We let Ssup be the classes of PT sources unpredictable to unbounded adversaries, and

this leads to UCE class UCE[Ssup]. In the basic definitions, only a single hashing key is

involved, and we also define mUCE, a multi-key analogue.

The full version of the UCE paper [18] provides a comprehensive description of

the ROM landscape, the UCE notion, and shows how a variety of applications can be

moved to the standard model via UCE. The paper also discusses a variety of UCE classes

to support these applications, including restrictions based on notions of unpredictability,

reset-security, splitting and run-time limitations. Although the framework we develop

here can be used to model several classes of sources and hence several classes of UCE

security, our applications, namely, KDM secure symmetric encryption schemes and MLE

schemes, will need only the UCE[Ssup] UCE class of [18]. Some classes of UCE sources

have been affected by a family of attacks due to Brzuska, Farshim, and Mittelbach [41].

These classes of attacks rely on indistinguishability obfuscation (IO) [61], and have been

instantiated by the authors based on the candidate IO schemes due to [61]. However,

these attacks do not apply to the class UCE[Ssup] which we consider here. This follows

from the fact that in UCE[Ssup], the predictors are allowed to run for unbounded time,

and the attacks rely on the unpredictability of a source which leaks an obfuscated circuit

containing a query point. But, there is some evidence that statistically-secure iO for
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general circuits is not possible. Garg, Gentry, Halevi, Raykova, Sahai, Waters [62]

give a construction of witness encryption from iO, and we observe that if the latter is

statistically secure, so is the former. But Garg, Gentry, Sahai, and Waters [63] show

that statistically-secure witness encryption implies a collapse of the Polynomial-Time

Hierarchy. Since IO secure against unbounded adversaries does not likely exist, such a

source cannot be unpredictable in this setting.

5.1 Definitions

We now extend the syntax of hash functions from Section 1 to allow variable

length outputs. A family of functions H = (K,H) specifies the following. On input the

security parameter 1λ , key generation algorithm K returns a key k ∈ {0,1}κ(λ ), where

κ: N→ N is the keylength function associated to H. The deterministic, PT evaluation

algorithm H takes 1λ , a key k ∈ [K(1λ )], an input x∈ {0,1}∗ with |x| ∈Ω(λ ), and a unary

encoding 1` of an output length ` ∈ ρ(λ ) to return an output H(1λ ,k,x,1`) ∈ {0,1}`.

Here Ω is the input-length function associated to H, so that Ω(λ )⊆ N is the (non-empty)

set of allowed input lengths, and similarly ρ is the output-length function associated to

H, so that ρ(λ )⊆ N is the (non-empty) set of allowed output lengths.

5.1.1 UCE security

Let H be a family of functions. Let S be an adversary called the source and D an

adversary called the distinguisher. We associate to them and H the game UCES,D
H (λ ) of

Fig. 5.2. The source has access to an oracle Hash and we require that any query x,1`

made to this oracle satisfy |x| ∈Ω(λ ) and ` ∈ ρ(λ ). When the challenge bit b is 1 (the

“real” case) the oracle responds via H under a key k that is chosen by the game and not

given to the source. When b = 0 (the “random” case) it responds as a RO. The source

communicates to its accomplice distinguisher a string L ∈ {0,1}∗ we call the leakage.
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Main UCES,D
H (λ )

b←${0,1}; k←$K(1λ )

L←$ SHash(1λ )

b′←$ D(1λ ,k,L)
Return (b′ = b)

Hash(x,1`)

If T [x, `] =⊥ then
If b= 1 then T [x, `]←H(1λ ,k,x,1`)
Else T [x, `]←${0,1}`

Return T [x, `]

Main PredP
S (λ )

done← false; Q← /0
L←$ SHash(1λ ); done ←
true

Q′←$ PHash(1λ ,L)
Return (Q∩Q′ 6= /0)

Hash(x,1`)

If done= false then Q←Q∪
{x}
If T [x, `] =⊥ then

T [x, `]←${0,1}`

Return T [x, `]

Main SPredP′
S (λ )

Q← /0
L←$ SHash(1λ )

x←$ P′(1λ ,L)
Return (x ∈ Q)

Hash(x,1`)

Q← Q∪{x}
If T [x, `] =⊥ then

T [x, `]←${0,1}`

Return T [x, `]

Figure 5.1. Games UCE, Pred used to define UCE security of family of functions H, and
game SPred defining the simplified but equivalent form of unpredictability. Here S is the
source, D is the distinguisher, P is the predictor and P′ is the simple predictor.

The distinguisher does get the key k as input and must now return its guess b′ ∈ {0,1}

for b. The game returns true iff b′ = b, and the uce-advantage of (S,D) is defined for

λ ∈ N via

AdvuceH,S,D(λ ) = 2Pr[UCES,D
H (λ )]−1 . (5.1)

One’s first thought may now be to say that H is UCE-secure if AdvuceH,S,D(·) is negligible

for all PT S and all PT D. But an obvious attack shows that no H can meet this definition.

Indeed, S can pick some x and `, let h←Hash(x,1`) and return leakage L = (x,h,1`) to

D. The latter, knowing k, can return 1 if h = H(1λ ,k,x,1`) and 0 otherwise.

To obtain useful and potentially achievable definitions of UCE-security for H, we

will restrict the adversaries. In [19], we consider many ways to do this, so that UCE will

be not a single definition but rather a framework in which many definitions are possible.

However, for our purposes here, we restrict attention to the class of unpredictable sources.

Let S be a class of sources and D a class of distinguishers. Then we let UCE[S,D] be
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the set of all H such that AdvuceH,S,D(·) is negligible for all (S,D) ∈ S×D. To say that

H is UCE[S,D]-secure simply means that H ∈ UCE[S,D]. We let Dpoly the class of all

PT distinguishers. We will almost always restrict attention to the latter and it is thus

convenient to let UCE[S] = UCE[S,Dpoly].

Unpredictable sources

Let S be a source. Consider game PredP
S (λ ) of Fig. 5.2 associated to S and an

adversary P called a predictor. Given the leakage, the latter outputs a set Q′. It wins if

this set contains any Hash-query of the source. For λ ∈ N we let

AdvpredS,P (λ ) = Pr[PredP
S (λ )] .

We consider the class of unpredictable sources where the predictor P is not necessarily a

PT algorithm, but there exist polynomials q,q′ such that for all λ ∈ N, predictor P makes

at most q(λ ) oracle queries and outputs a set Q′ of size at most q′(λ ) in game PredP
S (λ ).

We say S is unpredictable if AdvpredS,P (·) is negligible for all such predictors P. We let

Ssup the class of all PT, unpredictable sources. This gives the UCE class UCE[Ssup].

We stress that in the prediction game, the Hash oracle of the source is a RO

like in the random game, and the predictor gets the same oracle. The family H is not

involved in the definition of unpredictability: the latter is a property of the source. For

implementation, we suggest an instantiation based on HMAC [14, 11].

Simple unpredictability

Applications of unpredictability-based UCE assumptions involve proving the

unpredictability of sources, and this task is simplified by using a simpler formulation

of unpredictability, called simple unpredictability, that is equivalent to the original.

The formalization considers game SPredP′
S (λ ) of Fig. 5.2 associated to source S and an

adversary P′ called a simple predictor. There are two simplifications: the simple predictor
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Main UCES,D
H (λ )

b←${0,1}; k←$K(1λ )

L←$ SHash(1λ )

b′←$ D(1λ ,k,L)
Return (b′ = b)

Hash(x,1`)

If T [x, `] =⊥ then
If b = 1 then

T [x, `]← H(1λ ,k,x,1`)
Else T [x, `]←${0,1}`

Return T [x, `]

Main PredP
S (λ )

done← false; Q← /0
L←$ SHash(1λ ); done← true

Q′←$ PHash(1λ ,L)
Return (Q∩Q′ 6= /0)

Hash(x,1`)

If done= false then Q← Q∪{x}
If T [x, `] =⊥ then

T [x, `]←${0,1}`

Return T [x, `]

Main SPredP′
S (λ )

Q← /0
L←$ SHash(1λ )

x←$ P′(1λ ,L)
Return (x ∈ Q)

Hash(x,1`)

Q← Q∪{x}
If T [x, `] =⊥ then

T [x, `]←${0,1}`

Return T [x, `]

Figure 5.2. Games UCE, Pred used to define UCE security of family of functions H, and
game SPred defining the simplified but equivalent form of unpredictability. Here S is the
source, D is the distinguisher, P is the predictor and P′ is the simple predictor.

does not have access to the RO Hash, and its output is a single string x rather than a set

of strings. It wins if x is a Hash-query of the source. For λ ∈ N we let

AdvspredS,P′ (λ ) = Pr[SPredP′
S (λ )] .

We say that source S is simple unpredictable if AdvspredS,P′ (·) is negligible for all simple

predictors P′. The following lemma says that simple unpredictability is equivalent to

unpredictability.

Lemma 5.1.1 Let S be a source. Then S is unpredictable if and only if it is simple

unpredictable.

Proof:[Lemma 5.1.1 ] Suppose P′ is a simple predictor. Let PHash(1λ ,L) be the algo-

rithm which runs x←$ P′(1λ ,L) and returns {x}. Then AdvspredS,P′ (·) ≤ AdvpredS,P (·). This

shows that if S is unpredictable then it is also simple unpredictable. Turning to the

converse, let P be a predictor. We may assume wlog that S and P never repeat Hash
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queries. We may also assume wlog that the output Q′ of P contains every x for which

there exists ` such that Hash-query (x,1`) was made by P. (This is wlog because we

can modify P to include all such x in Q′.) Let q be a polynomial that bounds the number

of elements in the output Q′ of P. Game GS,P
1 (λ ) below includes the boxed code while

game GS,P
2 (λ ) does not:

P′(1λ ,L)

Q′←$ PHashSim(1λ ,L)

x←$ Q′

Return x

HashSim(x,1`)

y←${0,1}`; Return y

Main GS,P
1 (λ ) , GS,P

2 (λ )

Q← /0; L←$ SHash1(1λ ); Q′←$ PHash2(1λ ,L)

Return (Q∩Q′ 6= /0)

Hash1(x,1`)

Q← Q∪{x}; T [x, `]←${0,1}`;

Return T [x, `]

Hash2(x,1`)

If x ∈ Q then bad← true; Return T [x, `]

y←${0,1}`; Return y

Game GS,P
1 (λ ) is identical to PredP

S (λ ), except that it separates the Hash procedures

used by S and P, while maintaining consistency. Setting bad has no effect on the outcome

of the game. Games GS,P
1 (λ ) and GS,P

2 (λ ) are identical-until-bad. From the fundamental

lemma of game-playing [25],

AdvpredS,P (·) = Pr[GS,P
1 (·)]≤ Pr[GS,P

2 (·)]+Pr[GS,P
2 (·) sets bad].

From the assumption that Q′ contains every x such that P queried some (x,1`) to Hash,

if game G2 sets bad then P will surely win. Hence Pr[GS,P
2 (·) sets bad] ≤ Pr[GS,P

2 (·)].
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Main mUCES,D
H (λ )

(1n, t)←$ S(1λ ,ε)

For i = 1 to n do hk[i]←$K(1λ )

b←${0,1}; L←$ SHash(1n, t)
b′←$ D(1λ ,hk,L)
Return (b′ = b)

Hash(x,1`, i)

If T [x, `, i] =⊥ then
If b = 1 then

T [x, `, i]← H(1λ ,hk[i],x,1`)
Else T [x, `, i]←${0,1}`

Return T [x, `, i]

Main mPredP
S (λ )

(1n, t)←$ S(1λ ,ε)

done← false; Q← /0
L←$ SHash(1n, t); done← true

Q′←$ PHash(1λ ,1n,L)
Return (Q∩Q′ 6= /0)

Hash(x,1`, i)

If done= false then
Q← Q∪{x}

If T [x, `, i] =⊥ then
T [x, `, i]←${0,1}`

Return T [x, `, i]

Main mSPredP′
S (λ )

(1n, t)←$ S(1λ ,ε)

Q← /0
L←$ SHash(1n, t)
x←$ P′(1λ ,1n,L)
Return (x ∈ Q)

Hash(x,1`, i)

Q← Q∪{x}
If T [x, `, i] =⊥ then

T [x, `, i]←${0,1}`

Return T [x, `, i]

Figure 5.3. Games mUCE,mPred, and mSPred used to define mUCE security of family
of functions H, and game mSPred defining the simplified but equivalent form of unpre-
dictability. Here S is the multi-source, D is the distinguisher, P is the predictor and P′ is
the simple predictor.

Now, consider the simple predictor P′ as above. Then

AdvspredS,P′ (·) =
1
q

Pr[GS,P
2 (·)]≥ 1

2q
AdvpredS,P (·) .

This concludes the proof.

5.1.2 mUCE security

In UCE, there is a single target key hk. Some of our applications will depend on

an extension involving multiple keys. Here we define this mUCE extension of UCE.

Framework

Let H be a family of functions. Consider game mUCES,D
H (λ ) of Fig. 5.3 involving

a multi-source S and distinguisher D. Adversary S now begins by returning a unary-

encoded integer n≥ 1 indicating the number of instances, together with state information
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t. The game creates n, independent keys. The oracle Hash given to S now allows it to

query any instance i ∈ [1,n] of its choice. As before S returns leakage L based on which

the distinguisher D, now given the entire vector hk of keys, returns its guess bit b′. The

mUCE-advantage of (S,D) is defined for λ ∈ N by

Advm-uce
H,S,D (λ ) = 2Pr[mUCES,D

H (λ )]−1 . (5.2)

Let S be a class of multi-sources and D a class of distinguishers. Then we let mUCE[S,D]

be the set of all H such that Advm-uce
H,S,D (·) is negligible for all (S,D) ∈ S×D. We let

mUCE[S] = mUCE[S,Dpoly].

Classes

The single-key class UCE[Ssup] has a natural multi-key analogue. For λ ∈ N we

let Advm-pred
S,P (λ ) = Pr[mPredP

S (λ )] where game mPredP
S (λ ) is in Fig. 5.3. Here P can

run in unbounded time, but there must exist polynomials q,q′ such that for all λ ∈ N,

predictor P makes at most q(λ ,n) oracle queries and outputs a set Q′ of size at most

q′(λ ,n) in game PredP
S (λ ), where the number of keys n is defined via the output of S in

the first line of the game. We say S is unpredictable if Advm-pred
S,P (·) is negligible for all

predictors P. associated class of assumptions is mUCE[Ssup-m].

As with UCE, unpredictability is equivalent to simple unpredictability. In detail,

consider game mSPredP′
S (λ ) of Fig. 5.3 and let Advm-spred

S,P′ (λ ) = Pr[mSPredP′
S (λ )]. We

say that multi-source S is simple unpredictable if Advm-spred
S,P′ (·) is negligible for all simple

predictors P′. The following analogue of Lemma 5.1.1 shows equivalence of simple

unpredictability and unpredictability for multi-sources. The proof of Lemma 5.1.2 is

similar to the proof of Lemma 5.1.1 and is omitted.

Lemma 5.1.2 Let S be a multi-source. Then S is unpredictable if and only if it is simple

unpredictable.
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5.2 Security for key-dependent messages

In Section 5.2 we defined security for key-dependent messages (KDM) and

provided a construction that is KDM secure in the random oracle. We now show that

KDM security is possible in the standard model, using UCE. Black, Rogaway, and

Shrimpton (BRS) [29] formalized security in the presence of key-dependent messages

(KDM) and described a simple and efficient KDM-secure symmetric encryption scheme

in the ROM. We now instantiate the RO in the BRS scheme with a mUCE family and

obtain an efficient KDM-secure symmetric encryption scheme in the standard model.

There are several other standard-model KDM-secure encryption schemes [36, 5, 9, 90, 4]

but they are significantly more complex and less efficient than our instantiated BRS

scheme.

Definitions

Let SE be a symmetric encryption (SE) scheme as defined in Section 5.2.1. We

define non-adaptive KDM security for symmetric encryption via game KDMA
SE(λ ) of

Fig. 5.4, an adversary A = (A1,A2) is a pair of algorithms. Algorithm A1, when invoked

with (1λ ,ε), returns (1n, t) where n is the number of keys it is requesting be created, and

t is state information. Then when invoked with (1λ ,(t,k)) where k ∈ ({0,1}SE.kl(λ ))n

is a vector of keys, it outputs a triple of vectors s,m0,m1 satisfying the following:

(1) |s| = |m0| = |m1|, and (2) s[i] ∈ [1,n] and m0[i],m1[i] ∈ SE.il(λ ) for all i ∈ [1, |s|].

We say that SE is KDM-secure if AdvkdmSE,A(·) is negligible for every PT KDM adversary A,

where AdvkdmSE,A(λ ) = 2Pr[KDMA
SE(λ )]−1. Our definitions capture non-adaptive security,

but this includes the cases that have been most prominent in past work, namely key cycles

and cliques [36, 5, 1, 40].

Results

BRS [29] showed that encrypting a message m under key k by picking a random
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Main KDMA
SE(λ )

(1n, t)←$ A1(1λ ,ε)

For i = 1 to n do k[i]←${0,1}SE.kl(λ )

(s,m0,m1)←$ A1(1λ ,(t,k))
b←${0,1}
For i = 1 to |mb| do

c[i]←$SE.Enc(1λ ,k
[
s[i]
]
,mb[i])

b′←$ A2(1λ , t,c); Return (b = b′)

SE.Enc(1λ ,k,m)

k←$K(1λ )

h← H(1λ ,k,k,1ρ(λ ))

c← (k,h⊕m); Return c

SE.Dec(1λ ,k,(k,z))

h← H(1λ ,k,k,1|z|)
m←$ h⊕z; Return m

Figure 5.4. Left: The KDM game. Middle: The RKA game. Right: The SE scheme
SE = HtX[H].

r and returning (r,RO(r‖k)⊕m) is KDM secure when RO is a random oracle. The

natural first attempt to instantiate via a family H would be to add k←$ K(1λ ) to the

encryption key and then replace RO with H(1λ ,k, ·,1ρ(λ )), but this fails because in the

KDM setting the messages are chosen by A1 as a function of the encryption key(s), and

UCE-security will not apply if the messages depend on k. Instead, we leave the key

unchanged relative to the BRS scheme and view the random value r of the BRS scheme

as a key for H, so that a fresh key k is chosen for each encryption. Given H with λ ∈Ω(λ )

for all λ ∈ N, our instantiated transform produces the SE scheme SE = HtX[H] whose

encryption and decryption algorithms are described in Fig. 5.4. (Here “HtX” stands

for “Hash-then-XOR.”) Its key length is defined by SE.kl(λ ) = λ for all λ ∈ N and its

input length is SE.il = ρ . The following theorem says that HtX[H] is KDM secure if H is

mUCE[Ssup-m]-secure.

Theorem 5.2.1 If H is mUCE[Ssup-m]-secure, then HtX[H] is non-adaptive KDM secure.

Proof:[Theorem 5.2.1] Let SE = HtX[H]. Let A = (A1,A2) be a PT KDM adversary.

Assume that A1 outputs messages of length ρ(λ ). We will construct a PT unpredictable
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multi-source S and a PT distinguisher D such that

AdvkdmSE,A(·)≤ 2 ·Advm-uce
H,S,D (·) . (5.3)

The theorem then follows from the assumption that H ∈mUCE[Ssup-m]. Let q and n be

polynomials such that, in game KDMA
SE(λ ), we have |m0| ≤ q(λ ) and n≤ n(λ ) for all

λ ∈ N. The constructions of S and D are shown below:

SHash(1λ , t)

(1n, t ′)← t; d←${0,1}

If t = ε then

(1n, t ′)←$ A1(1λ ,ε); Return (1q(λ ),(1n, t ′))

Else

For i = 1 to n do k[i]←${0,1}λ

(s,m0,m1)←$ A1(1λ ,(t ′,k))

For i = 1 to |md| do

c′[i]←Hash(k[s[i]],1ρ(λ ), i)⊕md[i]

L← (c′, t ′,d); Return L

D(1λ ,hk,L)

(c′, t ′,d)← L

For i = 1 to |c′| do

c[i]← (hk[i],c′[i])

d′←$ A2(1λ , t ′,c)

If (d = d′) then

b′← 1

else

b′← 0

Return b′

Let b denote the challenge bit in game mUCES,D
H (·). Then

Pr[mUCES,D
H (·) |b = 1 ] = Pr[KDMA

SE(·)]

Pr[mUCES,D
H (·) |b = 0 ] =

1
2
.

Summing yields Equation (5.3). It remains to show that S is unpredictable. It suffices

to show that S is simple unpredictable by Lemma 5.1.2. Consider an arbitrary simple

predictor P′. Given |k| and the leakage (c′, t ′,d), the components of k are still uniformly

and independently distributed. Hence Advm-spred
S,P′ (λ )≤ n(λ )/2λ for every λ ∈ N.
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5.2.1 Message-locked encryption

In Chapter 4, we introduced the notion of message-locked encryption, and pro-

vided constructions in the standard model and random oracle models. However, the

standard model constructions either achived limited security, such as the SXE construc-

tion, or relied on the existence of other primitives (such as deterministic PKE) which are

themselves not known to exist in the standard model. Here we sort this issue by providing

a standard model instantiation of the Convergent Encryption construction which we

initially showed to be secure in the random oracle model. Specifically, we now show that

a particular variant of convergent encryption can be instantiated with a UCE secure hash

function family. Let H = (K,H) be a hash function family. Then, we associate an MLE

scheme CE[H] with H as follows. Parameter generation CE.Pg simply runs K to get kh

which it returns as the public parameters.

CE.Kg(1λ ,kh,m)

k← H(1λ ,kh,m,1λ )

Return k

CE.Enc(1λ ,kh,k,m)

c← m⊕H(1λ ,kh,k,1|m|)

Return c

CE.Dec(1λ ,kh,k,c)

m← c⊕H(1λ ,kh,k,1|c|)

Return m

Here CE.Tag(1λ ,kh,c) simply returns c. Correctness and tag consistency are easy to

verify. The following theorem shows that CE[H] is PRV$-CDA-secure.

Theorem 5.2.2 If H is UCE[Ssup]-secure, then CE[H] is PRV$-CDA-secure.

Proof:[Theorem 5.2.2] Let A be a PT high min-entropy PRV$-CDA adversary. Let v, `

be functions associated to A as per the definitions. Let a,c be the challenge bits of games

UCES,D
H (·), and PRV$-CDAA

CE[H](·) respectively. Consider the source and distinguisher

S,D described below.
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SHash(1λ )

m←$ A1(1λ )

For i = 1 to |m| do

k[i]←Hash(m[i],1λ )

c[i]←m[i]⊕Hash(k[i],1|m[i]|)

L← c

Return L

D(1λ ,L)

a′← A2(1λ ,hk,L)

Return a′

It can be seen that

Pr[PRV$-CDAA
CE[H](·) |c = 1 ] = Pr[UCES,D

H (·) |a = 1 ] ,

Pr[PRV$-CDAA
CE[H](·) |c = 0 ] = Pr[UCES,D

H (·) |a = 0 ] ,

leading to Advprv$-cda
CE[H],A (·) = AdvuceH,S,D(·). It remains to show that S is statistically unpre-

dictable and by Lemma 5.1.1 it suffices to show that S is simple statistically unpredictable.

If P′ is a simple predictor, it follows that AdvspredS,P′ (·)≤ v · (GuessA(·) + 2−λ ). Here v is

the function associated to A as per the definitions. The simple statistical unpredictability

of S then follows from the assumption that A has high min-entropy.

5.3 Constructions of UCE families

In this section, we describe constructions of UCE-secure function families. We

provide a ROM construction and prove that it is mUCE[Ssup]-secure. We go on to explore

practical instantiations of UCE-secure functions. There is value of validating UCE in the

ROM, even though it seem at first as not helping the goal of relying on random oracles.

Currently, RO-based design directly proves schemes secure in the ROM. UCE

instead enables a layered approach where base primitives with standard-model secu-

rity definitions are validated in the ROM. End goals are then reached from the base



www.manaraa.com

154

Main mUCES,D
H (λ )

(1n, t)←$ SRO(1λ ,ε)

For i = 1 to n do hk[i]←$K(1λ )

b←${0,1}; L←$ SRO,Hash(1n, t)
b′←$ DRO(1λ ,hk,L)
Return (b′ = b)

Hash(x,1`, i)

If T [x, `, i] =⊥ then
If b = 1 then T [x, `, i]← HRO(1λ ,hk[i],x,1`)
Else T [x, `, i]←${0,1}`

Return T [x, `, i]

RO(v,1`)
If H[v, `] =⊥ then H[v, `]←${0,1}`

Return H[v, `]

Main mPredP
S (λ )

done← false; Q← /0
L←$ SHash,RO(1λ ); done← true

Q′←$ PHash,RO(1λ ,L)
Return (Q∩Q′ 6= /0)

Hash(x,1`, i)

If done= false then Q← Q∪{x}
If T [x, `, i] =⊥ then

T [x, `, i]←${0,1}`

Return T [x, `, i]

Figure 5.5. Left: Game mUCE defines multi-key UCE security in the ROM. Right:
Game mPred defines multi-key unpredictability in the ROM.

primitives purely in the standard model, the ROM being entirely dispensed with in the

second step. In implementations, we would instantiate families assumed UCE-secure

via appropriately-keyed cryptographic hash functions whenever these appear to meet the

particular UCE notion being used. UCE lets us be precise about the properties sought

from the hash functions, and enables cryptanalytic validation, which, even if difficult, is

at least meaningful.

5.3.1 Achieving UCE in the ROM

Definitions

The first step is to extend the syntax. In a ROM family of functions H, the

algorithm H has oracle access to RO. The rest is as before. We now define mUCE[Ssup-m]

security of H in the ROM. The multi-source S now has access to RO in addition to Hash,

and the distinguisher gets access to RO as well. We continue to define m-uce advantage
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via Equation (5.2), with game mUCES,D
H (λ ) now being that of Fig. ??. The adversary

now gets oracle access to RO in addition to Hash. We say that S is unpredictable

if Advm-pred
S,P (·) is negligible for any P, where Advm-pred

S,P (λ ) = Pr[PredP
S (λ )] and game

Advm-pred
S,P (λ ) is in Fig. 5.5. We say that H is mUCE[Ssup-m]-secure in the ROM if

Advm-uce
H,S,D (·) is negligible for every PT unpredictable multi-source S and every PT D. Let

mUCEro[Ssup-m] denote the set of all ROM function families H that are mUCE[Ssup-m]-

secure in the ROM.

Results

We now describe a mUCE[Ssup-m]-secure ROM family of functions. The con-

struction H is as follows. Let K(1λ ) return hk←${0,1}λ for every λ ∈ N. Let Ω = N

and ρ = N. Let HRO(1λ ,k,m,1`) return RO(k ‖m,1`) for every k ∈ {0,1}λ , every

m ∈ {0,1}∗, every ` ∈ N and every λ ∈ N. The following says that H is mUCE[Ssup-m]-

secure in the ROM.

Theorem 5.3.1 Let H be the ROM function family defined above. Then H is

mUCEro[Ssup-m] secure.

Proof: Let S be a PT unpredictable multi-source and let D be a PT distinguisher. Let

ν(λ ),q be polynomials such that n≤ ν(λ ) and S,D between them make at most q(λ )

RO-queries in game mUCES,D
H (λ ), for all λ ∈ N. Assume ν(λ ) < 2λ for all λ ∈ N.

Wlog, assume that S doesn’t repeat a query to Hash or RO, and D does not repeat a

query to RO. We’ll construct a predictor P such that for all λ ∈ N we have

Advm-uce
S,D,H (λ )≤ Advm-pred

S,P (λ )+
2ν(λ ) ·q(λ )+ν(λ )2

2λ
. (5.4)

The theorem follows from the assumption that S is unpredictable. Consider games G1–

G6 in Fig. 5.6 and Fig. 5.7. We let RO1 be the interface of S to access to the random

oracle, and RO2 be that of D. Let d be the challenge bit of game mUCES,D
H (·). Then
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Main GS,D
1 (λ ), GS,D

2 (λ )

(1n, t)←$ S(1λ ,ε); M← /0
For i = 1 to n do

k[i]←${0,1}λ

If k[i] ∈M then
bad← true

k[i]←${0,1}λ\M
M←M∪{k[i]}

L←$ SHash,RO1(1n, t)
b←$ DRO2(1λ ,k,L)
Return (b = 1)

Hash(x,1`, i)
v← k[i]‖x
If H[v, `] =⊥ then

H[v, `]←${0,1}`

Return H[v, `]

RO1(v,1`)
If H[v, `] =⊥ then H[v, `]←${0,1}`

Return H[v, `]

RO2(v,1`)
If H[v, `] =⊥ then H[v, `]←${0,1}`

Return H[v, `]

Main GS,D
3 (λ ) , GS,D

4 (λ )

(1n, t)←$ S(1λ ,ε); M← /0
For i = 1 to n do

k[i]←${0,1}λ

If k[i] ∈M then
bad← true; k[i]←${0,1}λ\M

M←M∪{k[i]}
L←$ SHash,RO1(1n, t); b←$ DRO2(1λ ,k,L)
Return (b = 1)

Hash(x,1`, i)
If T [x, `, i] =⊥ then T [x, `, i]←${0,1}`

Return T [x, `, i]

RO1(v,1`)
x← v[λ +1, |v|]; K← v[1,λ ]
For i = 1 to n do

If K = k[i] then
coll← true

If T [x, `, i] =⊥ then T [x, `, i]←${0,1}`

Return T [x, `, i]
If H[v, `] =⊥ then H[v, `]←${0,1}`

Return H[v, `]

RO2(v,1`)
x← v[λ +1, |v|]; K← v[1,λ ]
For i = 1 to n do

If K = k[i] then
If T [x, `, i] =⊥ then T [x, `, i]←${0,1}`

Return T [x, `, i]
If H[v, `] =⊥ then H[v, `]←${0,1}`

Return H[v, `]

Figure 5.6. Games G1–G4 for the proof of Theorem 5.3.1. Games G2,G3 include the
corresponding boxed statement, while the other games do not.

Pr[GS,D
1 (λ )] = Pr[mUCES,D

H (λ ) | d = 1] and Pr[GS,D
6 (λ )] = 1−Pr[mUCES,D

H (λ ) | d = 0].

We explain the game chain up to the terminal game. In game GS,D
2 (λ ), we sample the
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Main GS,D
5 (λ ) GS,D

6 (λ )

(1n, t)←$ S(1λ ,ε)

For i = 1 to n do k[i]←${0,1}λ

L←$ SHash,RO1(1n, t)
b←$ DRO2(1λ ,k,L)
Return (b = 1)

RO1(v,1`)
x← v[λ +1, |v|]; K← v[1,λ ]
For i = 1 to n do

If K = k[i] then coll← true

If H[v, `] =⊥ then H[v, `]←${0,1}`

Return H[v, `]

Hash(x,1`, i)
If T [x, `, i] =⊥ then

T [x, `, i]←${0,1}`

Return T [x, `, i]

RO2(v,1`)
x← v[λ +1, |v|]; K← v[1,λ ]
For i = 1 to n do

If K = k[i] then
If H[v, `] 6=⊥ then
bad← true

Return H[v, `]
T [x, `, i]←${0,1}`

Return T [x, `, i]
If H[v, `] =⊥ then H[v, `]←${0,1}`

Return H[v, `]

Figure 5.7. Games G5 and G6 for the proof of Theorem 5.3.1. Game G5 includes the
corresponding boxed statement, while the other game does not.

hash keys so that they are distinct. The two games GS,D
1 (λ ) and GS,D

2 (λ ) are identical-

until-bad. Then, for all λ ∈ N, we have

Pr[GS,D
1 (λ )]−Pr[GS,D

2 (λ )]≤ Pr[GS,D
2 (λ ) sets bad]≤ ν(λ )2

2λ+1 .

In game GS,D
3 (λ ), for each string v, if there is i ≤ n such that v[1,λ ] = k[i], instead of

reading/writing to H[v, `], we’ll use T
[
v[λ +1, |v|], `, i

]
. Since the keys are distinct, for

every λ ∈ N,

Pr[GS,D
2 (λ )] = Pr[GS,D

3 (λ )] .

In game GS,D
4 (λ ), the keys now are sampled independently. The two games GS,D

3 (λ ) and

GS,D
4 (λ ) are identical-until-bad. Then for every λ ∈ N,

Pr[GS,D
3 (λ )]−Pr[GS,D

4 (λ )]≤ Pr[GS,D
4 (λ ) sets bad]≤ ν(λ )2

2λ+1 .
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In game GS,D
5 (λ ), replies from RO2 are no longer consistent with Hash replies. The two

games GS,D
4 (λ ) and GS,D

5 (λ ) are identical-until-coll. Then for every λ ∈ N,

Pr[GS,D
4 (λ )]−Pr[GS,D

5 (λ )]≤ Pr[GS,D
5 (λ ) sets coll]≤ ν(λ ) ·q(λ )

2λ
,

where the last inequality is due to the fact that the keys now are uniformly random, and

independent of whatever S receives.

Games GS,D
5 (λ ) and GS,D

6 (λ ) are identical-until-bad. The flag bad is set only if S

or D queries (k[i]‖x,1`) to RO1, for some i≤ n. Then, it is easy to see that there exists a

predictor P which captures D setting bad by running D with access to an oracle, noting

the queries, and returning as its guess set the set of queries made by D such that

Pr[GS,D
5 (λ )]−Pr[GS,D

6 (λ )]≤ Pr[GS,D
6 (λ ) sets bad]≤ ν(λ ) ·q(λ )

2λ
+Advm-pred

S,P (λ ) .

Hence, for every λ ∈ N,

Advm-uce
S,D,H (λ ) = Pr[mUCES,D

H (λ ) |d = 1 ]+Pr[mUCES,D
H (λ ) |d = 0] ]−1

= Pr[GS,D
1 (λ )]−Pr[GS,D

6 (λ )]

≤
5

∑
i=1

Pr[GS,D
i (λ )]−Pr[GS,D

i+1(λ )]

≤ Advm-pred
S,R (λ )+

2ν(λ ) ·q(λ )+ν(λ )2

2λ

yielding Equation (5.4).

A practical UCE construction

We consider a practical, heuristic instantiation for a family of functions assumed

UCE secure. The UCE framework and security definitions are asymptotic, while real-

world instantiations are going to be based on non-asymptotic hash functions, so we make
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no formal claims about security. We ignore the security parameter and consider FOL

families, so that we view K as taking no inputs and we view H as taking only a key and

an input. One could consider instantiations based on cryptographic hash functions such

as SHA256, but UCE security requires a keyed function, and SHA256 is not keyed. This

suggests that we use the HMAC construction of [14, 86]. This is indeed our leading

suggestion for a practical way to instantiate families assumed UCE secure.
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